Study of the interaction of e+e- pair background with the ILD detector

S. Lukić "Vinča" Institute, Belgrade

Overview

- DDSim simulation of the interaction of e+e- pair background with the ILD_o1_v05 and ILD_I5_v02 detector models as implemented in DD4hep
 - Pair background generated with Guinea-pig, same as used by Alejandro and Eduard
- Focus on the occupancies in the tracker
- LCTuple processor used to store hit and MC particle information into a .root file
 - Facilitates the analysis of the vertices of the MC particles making hits in the tracker elements
- TrackerHitCounter processor (new) to count hits in all tracker layers and calculate the number of SimTrackerHits per unit area per run (1 run = 1 BX in this study)

Hit rates

System	Layer #	N _{hit} (cm ⁻² BX ⁻¹)
VXD	1	3.0 ± 0.5
	2	1.9 ± 0.4
	3	0.12 ± 0.03
	4	0.10 ± 0.03
	5	0.030 ± 0.011
	6	0.024 ± 0.010
SIT	1	(4.2 ± 1.4) x 10 ⁻³
	2	(2.7 ± 1.3) x 10 ⁻³
	3	(1.4 ± 0.6) x 10 ⁻³
	4	(1.2 ± 0.5) × 10 ⁻³
SET	1	(2.4 ± 0.9) x 10 ⁻⁵
	2	(2.6 ± 1.2) x 10 ⁻⁵

The uncertainties represent the standard deviations on a sample of 10 BX

Hit rates (contd.)

System	Layer #	N _{hit} (cm ⁻² BX ⁻¹)
FTD	1	0.036 ± 0.012
	2	0.020 ± 0.007
	3	0.013 ± 0.004
	4	0.011 ± 0.004
	5	0.006 ± 0.003
	6	0.004 ± 0.002
	7	(3.3 ± 1.7) x 10 ⁻³
System		N _{hit} (BX ⁻¹)
TPC	Total	270 ± 540

The uncertainties represent the standard deviations on a sample of 10 BX

Origin of the hits in VXD (MC vertices)

Only ~4 permille of SimTrackerHits are made by MC particles with $abs(z_{vtv}) > 3 m$

Origin of the hits in SET (MC vertices)

No Anti-DID field

Origin of the hits in SET (MC vertices)

Nominal Anti-DID field

47% of SimTrackerHits made by MC particles with $abs(z_{vtx}) > 3 \text{ m}$

Observations

- Very few hits in VXD from particles backscattered from BeamCal (a few permille, as opposed to 15-30% reported by Alejandro).
- Hit rate in VXD about ½ of the rate reported by Eduard, or ~¼ of the rate reported by Alejandro.
- AntiDID field reduces the rates in the outer tracker elements (e.g. by a factor 2 in SET), but has no significant effect on VXD.
- Tested a number of hypotheses (some redundant, because of my poor knowledge of the inner workings of ddsim)
 - "DDSim parameters prevent backscattered shower particles in BeamCal from being tracked" - wrong
 - "Tracking region must encompass (or reach) BeamCal in order to correctly register backscattered hits." - correct, small effect in VXD but large in, e.g., SET
 - "Something broken in iLCSoft v01-19-05 w.r.t. v01-19-02 (approximately the version used by Alejandro)" wrong

Conclusions

- Significant disagreements with previous studies. The reasons are, as yet, unknown.
- The size of the "tracking region" defined in xml determines whether shower backscattering will be taken into account.
- With present results, one may conclude that the Anti-DID field improves the occupancies in the outer elements of the tracker, but not in the VXD