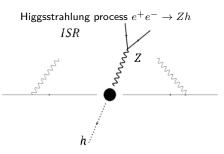
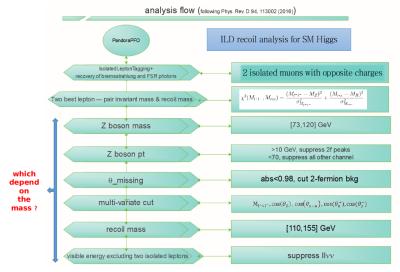
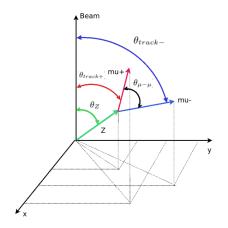
Update on new light scalar study


Yan Wang

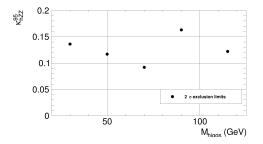
January 24, 2018



- ▶ signal benchmark samples are M_h = 30, 50, 70, 90, 115 GeV.
- Backgrounds include 2-fermion leptonic/bhabha, 4-fermion, leptonic, 4-fermion, semi-lepton (4f^{sl}), and (2)4-fermion, hadronic (2f^h, 4f^h).
- ▶ $\int Ldt = 2000 \text{ fb}^{-1}$, center-of-mass energy is $\sqrt{s} = 250 \text{ GeV}$.
- ▶ beam polarization is $(Pe^-, Pe^+) = (-80\%, +30\%).$


The results in LCWS2017 — analysis flow

The results in LCWS2017 — variables in MVA



► BDTG contains $\cos(\theta_Z), \cos(\theta_{\mu-\mu}),$ $\cos(\theta_{track+}), \cos(\theta_{track-}),$ $M_{l+l-}.$

The results in LCWS2017 — significance and 95% exclusion limits on coupling scale factor

M_h (GeV)	30	50	70	90	115
significance	51.6	59.0	56.4	48.5	41.5

LCWS results

- ▶ Beam polarization is (Pe⁻, Pe⁺) = (-80%, +30%).
- ► $\cos(\theta_Z)$, $\cos(\theta_{\mu-\mu})$, $\cos(\theta_{track+})$, $\cos(\theta_{track-})$, M_{l+l^-} for MVA input.
- Backgrounds include 2-fermion leptonic/bhabha, 4-fermion, leptonic, 4-fermion, semi-lepton (4f^{sl}), and (2)4-fermion, hadronic (2f^h, 4f^h).
- Signal benchmark samples are $M_h = 30, 50, 70, 90, 115 \text{ GeV}, 20 \text{ GeV}$ step.

new results

- ► The staging scenario (-+,+-,--,++) = (45%,45%,5%,5%).
- Increase acoplanar in MVA.
- Increase SM Higgs and γγ backgrounds.
- Signal benchmark samples are $M_h = 10, 15, 20, ..., 120 \text{ GeV}, 5 \text{ GeV}$ step.
- ► Changing the P_T^{µ⁺µ⁻} and recoil mass cut.

Changing the scenario — $P(e^-, e^+) = (-100\%, +100\%)$ for $\int Ldt = 2000$ fb⁻¹ at 250 GeV

Take $M_h = 115 \text{ GeV}$ for example.

$\int Ldt = 2000 f b^{-1}$	$higgs_{115}$	$4f_l$	$4f_{sl}$	$2f_l$	total bk	efficienty	significance
no cut	42550.3	1.78×10^{7}	6.26×10^{7}	4.25×10^{7}	1.73×10^{8}	1	3.23
$N_{\mu} \in [2, 20]$	39951.7	1.98×10^{6}	400505	1.71×10^{7}	1.95×10^{7}	0.94	9.05
$N_{\mu+} \in [1, 10]$	39927.7	1.98×10^{6}	400301	1.71×10^{7}	1.95×10^{7}	0.94	9.04
$N_{\mu^{-}} \in [1, 10]$	39907.7	1.98×10^{6}	399971	1.71×10^{7}	1.95×10^{7}	0.94	9.04
$M_{l+l-} \in [73, 120]$	38162	575549	283157	7.70×10^6	8.56×10^{6}	0.90	13.01
$P_T^{l+l^-} \in [10, 90]$	37669.5	524326	272793	1.72×10^{6}	2.52×10^{6}	0.89	23.56
$ \cos\theta_{mis} < 0.98$	34194.1	485873	220642	862170	1.57×10^6	0.80	27.01
$BDTG \in [0, 1]$	30366.4	144446	97128.1	99044.7	340619	0.71	49.86
$M_{rec} \in [90, 160]$	30354.4	134784	89578.6	26677.9	251040	0.71	57.22
all cut	30354.4	134784	89578.6	26677.9	251040	0.71	57.22

Changing the scenario — $P(e^-, e^+) = (+100\%, -100\%)$ for $\int Ldt = 2000$ fb⁻¹ at 250 GeV

$\int Ldt = 2000 f b^{-1}$	$higgs_{115}$	$4f_l$	$4f_{sl}$	$2f_l$	$total \ bk$	efficienty	significance
no cut	27090.6	2.56×10^{6}	2.84×10^{6}	3.29×10^{7}	8.67×10^{7}	1	2.91
$N_{\mu} \in [2, 20]$	25356.9	275379	201052	1.28×10^7	1.33×10^{7}	0.94	6.94
$N_{\mu^+} \in [1, 10]$	25324.9	274177	201020	1.28×10^{7}	1.33×10^{7}	0.93	6.93
$N_{\mu^{-}} \in [1, 10]$	25288.9	273068	201004	1.28×10^{7}	1.33×10^{7}	0.93	6.92
$M_{l+l-} \in [73, 120]$	24255.9	97909.8	127030	5.08×10^{6}	5.31×10^{6}	0.90	10.50
$P_T^{l^+l^-} \in [10, 90]$	23927.5	82159.9	120176	1.15×10^{6}	1.35×10^{6}	0.88	20.43
$ \cos \theta_{mis} < 0.98$	21549.2	62346	96019.3	577101	735466	0.80	24.77
$BDTG \in [0, 1]$	19707.4	28357.2	40804.3	62807.7	131969	0.727463	50.60
$M_{rec} \in [90, 160]$	19687.4	25427.7	36330.9	21003.1	82761.7	0.73	61.51
all cut	19687.4	25427.7	36330.9	21003.1	82761.7	0.73	61.51

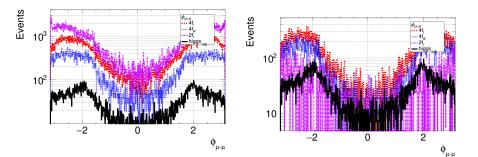
using $P(e^-, e^+) = (-80\%, +30\%)$ for $\int Ldt \ 2000 \ fb^{-1}$, the significance is 44.8 (in LCWS2017, this is 45.6, due to code correction, but still checking this part!)

combining polarizations within the scenario (-+, +-, --, ++) = (45%, 45%, 5%, 5%). significance for different polarization:

- ▶ (-,-): 7.79 for 100 fb⁻¹
- ▶ (-,+) : 30.04 for 900 fb⁻¹
- ▶ (+,-) : 31.28 for 900 fb⁻¹
- ▶ (+,+): 7.92 for 100 fb⁻¹

$\int Ldt = 2000 f b^{-1}$	$higgs_{115}$	$4f_l$	$4f_{sl}$	$2f_l$	$total \ bk$	significance
combined events	14924.7	49566.8	38225.7	14129	101921	43.66

The acoplanar — decrease $2f_l$ backgrounds. Combining polarizations within the scenario (-+, +-, --, ++) = (45%, 45%, 5%, 5%) for $\int Ldt \ 2000 \ fb^{-1}$ at $\sqrt{s} = 250 \ \text{GeV}$. Significance for different polarization:


- ▶ (-,-): 7.76 for 100 fb⁻¹
- ▶ (-,+) : 29.97 for 900 fb⁻¹
- ▶ (+,-) : 31.37 for 900 fb⁻¹
- $\blacktriangleright~(+,+):~$ 7.93 for 100 $~{\rm fb}^{-1}$

$\int Ldt = 2000 f b^{-1}$	$higgs_{115}$	$4f_l$	$4f_{sl}$	$2f_l$	total bk	significance
combined events	14831.7	49311.5	37886.9	13554.2	100753	43.63

Without acoplanar in MVA, the result is 43.66. NO effect on final results ...

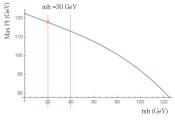
The case when a coplanar is included in MVA, this figure is the distribution after pre cuts. The case when acoplanar is NOT included in MVA, This figure is the acoplanar distribution after BDTG cut.

combining polarizations within the scenario (-+,+-,--,++) = (45%,45%,5%,5%). significance for different polarization:

- ▶ (-,-): 7.43 for 100 fb⁻¹
- ▶ (-,+): 28.79 for 900 fb⁻¹
- ▶ (+,-) : 29.25 for 900 fb⁻¹
- ▶ (+,+): 7.47 for 100 fb⁻¹

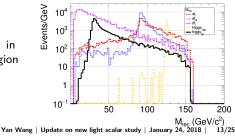
$\int Ldt = 100 f b^{-1}$	$higgs_{115}$	$4f_l$	$4f_{sl}$	$2f_l$	$Higgs_{125}$	significance
combined events	14807.4	48868.6	37775.1	13490.2	12294.9	41.5

Without SM Higgs and $\gamma\gamma$ backgrounds, the result is 43.6.



New samples and new cuts

New signal samples from $10\,{\rm GeV}$ to $120\,{\rm GeV}$ with $5\,{\rm GeV}$ step.


LCWS cuts

- ▶ Max $P_{\rm T}^{\mu^+\mu^-}$ cut: max $P_{\rm T}^{\mu^+\mu^-}$ in $[M_h 10, \ M_h + 10]$ GeV region
- ▶ recoil mass cut: $[(M_h 20), 160]$ GeV

new cuts

- ► Max $P_{\rm T}^{\mu^+\mu^-}$ cut: max $P_{\rm T}^{\mu^+\mu^-}$ in $[M_h 2.5, M_h + 2.5]$ GeV region
- recoil mass cut: $[(M_h 5), 160]$ GeV

Compare final results for LCWS2017 and new

- including $\gamma\gamma$, SM Higgs backgrounds.
- including acoplanar of the two muon in MVA.
- combining polarizations within the scenario

$$(-+,+-,--,++) = (45\%,45\%,5\%,5\%).$$

• $P_{\rm T}^{\mu^+\mu^-}$ cut and recoil mass cut.

M_h (GeV)	LCWS results	new results with old cuts	new results with new cuts
30	56.9	51.6	62.6
50	66.4	59.0	61.6
70	64.0	56.4	59.0
90	52.5	48.5	49.7
115	45.6	41.5	50.2

The new results — combining all improvements

- combining polarizations within the scenario (-+, +-, --, ++) = (45%, 45%, 5%, 5%).
- including acoplanar of the two muon in MVA.
- including $\gamma\gamma$, SM Higgs backgrounds.
- using the new $P_{\rm T}^{\mu^+\mu^-}$ cut and recoil mass cut.

M_h (GeV)	LCWS results
30	56.9
50	66.4
70	64.0
90	52.5
115	45.6

New results after all improvements. (preliminary)

M_h (GeV)	10	15	20	25	30	35	40	45	50	55
significance	56.8	58.3	59.9	61.8	62.6	63.2	62.8	62.4	61.6	63.8
M_h (GeV)	60	65	70	75	80	85	90	95	100	105
significance	62.5	60.9	59.0	56.5	54.3	51.9	49.7	49.5	52.6	52.0
M_h (GeV)	110	115	120							
significance	51.3	50.2	49.7 _{. Yar}	Wang Up	date on new	light scalar s	study Janu	ary 24, 2018	15/25	DESY

OPAL detector

- ▶ 1991-1995 $\sqrt{S} = 91$ GeV (LEP1) 115.4 pb⁻¹
- ▶ 1997-2000 $\sqrt{S} = 183 209$ GeV (LEP2) 662.4 pb⁻¹

MC samples

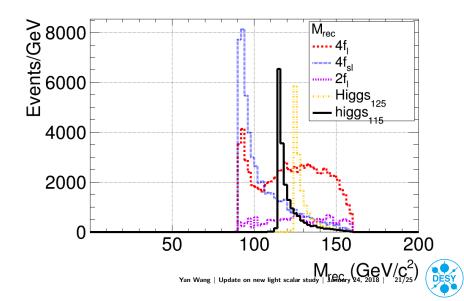
- 1 keV 110 GeV with HZHA generator
- decay mode:
 - all possible SM Higgs decay channels
 - $\begin{array}{l} \bullet \quad \text{inisible decay } (S^0 \xrightarrow{\sim} \chi^0 \chi^0 + S^0 \rightarrow \chi^0_2 \chi^0_1, \chi^0_2 \rightarrow \chi^0_1 + \gamma/Z^{0*} \\ + S^0 \rightarrow AA, A \rightarrow cc/gg/\tau\tau) \end{array}$
- \blacktriangleright 500-1000 events for each S^0 mass and decay mode.
- bkg samples: The luminosity of main bkg MC samples is 4 times than the real 2fermion bkg and 50 times than 4fermion bkg

comparing LEP2 and my strategy for searching light scalars

- at least two opposite charged leptons
- Find two best leptons $m_{ll} \sim m_Z$
- acoplanarity
- ▶ polar angle of missing momentum, $|\theta_{mis}|$ <0.95 for p_{mis} > 5 GeV
- ► isolation of lepton tracks, $\alpha_{iso}^1 > 15^\circ$, $\alpha_{iso}^1 > 10^\circ$
- ▶ invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2]$ GeV
- photon veto
- ▶ $p_{ll}^z < 50 \text{ GeV}$

- at least two isolated muon, with IsolatedLeptonTagging Processor
- \blacktriangleright find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_h$
- Recovery of bremsstrahlung and FSR photons
- ▶ Reconstruct Z boson mass $M_{\mu\mu} \in [73, 120]$ GeV.
- Z boson $70 > P_T > 10$ GeV
- the polar angle of the missing momentum, $|\theta_{mis}| < 0.98$
- $$\label{eq:multivariate cut :} \begin{split} & \mathsf{multivariate cut :} M_{l^+l^-}, \ cos(\theta_Z), \\ & cos(\theta_{\mu-\mu}), cos(\theta_{track+}) \ \mathsf{and} \ cos(\theta_{track-}) \end{split}$$
- ▶ recoil mass cut $M_{rec} \in [110, 155]$ GeV.
- \blacktriangleright visible energy cut, $Evis > 10~{\rm GeV}$

- ▶ The preliminary new results for (-+, +-, --, ++) = (45%, 45%, 5%, 5%) scenario.
- The results use complete backgrounds, new observables, new cuts and new benchmark mass points.
- Checking and further understanding the new results.
- Studying ISR photon to decrease $2f_l$ backgrounds.



backup

	M_{l+l-}	$\cos(\theta_Z)$	$\cos(\theta_{\mu-\mu})$	$\cos(\theta_{track+})$	$\cos(\theta_{track-})$	acoplanar
M_{l+l-}	+1.000	+0.017	-0.244	-0.000	+0.005	+0.00
$\cos(\theta_Z)$	+0.017	+1.000	-0.000	+0.370	+0.364	-0.00
$\cos(heta_{\mu-\mu})$	-0.244	-0.000	+1.000	+0.009	-0.008	+0.01
$\cos(\theta_{track+})$	-0.000	+0.370	+0.009	+1.000	-0.597	-0.01
$\cos(\theta_{track-})$	+0.005	+0.364	-0.008	-0.597	+1.000	+0.01
acoplanar	+0.002	-0.007	+0.012	-0.019	+0.010	+1.00

preselection:

- two opposite charged muon
 - $\frac{E}{n} < 0.2$ for muon, at least 3 hits in muon chambers+hadronic calorimeters
 - p track momentum, E—associated electromagnetic energy
- $\blacktriangleright \ E_{\mu}^{1eading} > 0.22 \cdot \sqrt{s}, E_{\mu}^{subleading} > 0.12 \cdot \sqrt{s}$
- ▶ isolation angle $\alpha_{iso}^1 > 15^\circ \ \alpha_{iso}^2 > 10^\circ$
 - maximum angle for which the energy in the cone is less than 1 GeV
- detector angle $cos|\theta| > 0,94$
- if more than one leptons. $m_{\mu\mu} \sim m_Z$.

comparing IsolatedLeptonTagging with MVA variables:

 $E_{cone}^{charged}, E_{cone}^{neutral}$, momentum P, $cos\theta$ of large cone, energe ratio of large cone, D0, Z0, E_{uoke} , total E_{cal} ...

- ▶ acoplanarity angle $\pi \phi_{open} > 0.15 0.20$ —- reject 2fermion bkgs
 - $\blacktriangleright \ \phi_{open}$ the opening angle between the two lepton tracks in the plane perpendicular to the beam axis
- ▶ $|cos\theta_{missing}|$ <0.95 reject $\gamma\gamma$ bkg
- ▶ $|m_{ll} m_Z| < 10$ GeV for muon
- > γ veto reject Z with energetic ISR photon
 - \blacktriangleright if there is only one cluster in the eletromagnetic calorimeter not assolated to a track and $E_{cluster}>60~{\rm GeV}$
- Forward calorimeters two tracks with $E_{forward} > 3$ GeV in the forward calorimeters.
 - ▶ two tracks with $E_{forward} > 3$ GeV in the forward calorimeters.
- $p_z^{l1} + p_z^{l2} < 50 \text{ GeV}$ reject Z with energetic ISR photon

Event selection for $Z \rightarrow ee/\mu\mu$ channel at LEP 1/2

- two opposite charged particle (electrons or muon),
 - $\frac{E}{n} > 0.8$ for electron, energy loss $\frac{dE}{dx}$
 - p track momentum, E—associated electromagnetic energy
 - $\frac{E}{n} < 0.2$ for muon, at least 3 hits in muon chambers+hadronic calorimeters
- ▶ The leading electron/muon with $E_e^1 > 20 27$ GeV and $E_\mu^1 > 20 27$ GeV in LEP I, the second lepton with $E_l^2 > 10 20$ GeV
- $\blacktriangleright \ E_e^1 > 0.22 \cdot \sqrt{s}, E_e^2 > 0.11 \cdot \sqrt{s}, \ E_\mu^1 > 0.22 \cdot \sqrt{s}, E_\mu^2 > 0.12 \cdot \sqrt{s}$
- ▶ isolation angle $\alpha_{iso}^1 > 20^\circ \alpha_{iso}^2 > 10^\circ$ for LEP 1, $\alpha_{iso}^1 > 15^\circ \alpha_{iso}^2 > 10^\circ$ for LEP 2— maximum angle for which the energy in the cone is less than 1 GeV
- \blacktriangleright detector angle $cos|\theta|>0,9$ for electron, $cos|\theta|>0,94$ for muon
- more than one leptons. two highest momentum leptons in LEP I, two leptons whose invariant mass closest to m_Z.
- ▶ acoplanarity angle 0.11 rad $< \alpha < 2.0$ rad, $\phi_a > 0.15 0.20$ reject 2fermion bkgs $\alpha = \phi_a \times < \sin \theta > \phi_a = \pi \phi_{open}$. in LEP 1, θ is the polar angle of tracks. in LEP 2, $sin\theta = 1$.
- ▶ $|cos\theta_{missing}| < 0.98$ for LEP 1 and $|cos\theta_{missing}| < 0.95$ for LEP 2. —- reject γ

Yan Wang | Update on new light scalar study | January 24, 2018 | 24/25

 $\blacktriangleright \ M_{\mu^+\mu^-} > 20 \, {\rm GeV}$

γ veto:

- > track number < 4, if there is an unassociated cluster in the electromagneti calorimeter with E_{cal} 1 GeV outside a 10 degree cone around a lepton candidate
- $E_{forward} > 2$ GeV, polar angle in 47-200 mrad
- ► conversion veto: events with one, two or three tracks in addition to the lepton are excluded if at least one of them is identified as a track from a conversion reject $\gamma \rightarrow ee$, satisfy the sensitivity of decay mode $S \rightarrow \gamma\gamma, S \rightarrow \gamma + inv$, using $Z \rightarrow \nu\nu, S \rightarrow \gamma\gamma$ to compensate sensitivity.

