ATF2 IP-BPMs displacement-scanning system Hardware status

Philip Bambade, Sandry Wallon - LAL-IN2P3-CNRS - Université Paris-Sud, Orsay -France Haoua Amina BRAHAMI - Ecole Nomale Supérieure Paris-Saclay

ATF2 IP-BPMs with its displacement system

 (to bring vertical and horizontal disp + a bit of roll and pitch)

> 3 Cedrat APA200M piezo actuators (nom. stroke / close loop res. : $230 / 2.3 \mu \mathrm{~m}$) acting as a tripod for BPM-AB vertical disp.
> (plus 1 actuator for horizontal disp. [not shown])

3 PI P-602.3S0 piezo actuators (nom. stroke / resolution : $300 / 3 \mu \mathrm{~m}$) acting as a tripod for BPM-C vertical disp.
(plus 1 actuator for horizontal disp. [not shown])

Movers factory's calibration

(Data used in EPICS, currently through a gain in $\mu \mathrm{m} / \mathrm{V}$)

> Example of factory calibration of a spare cedrat mover to be used.
> NB. During factory calibration :
> - main mover's parameters are established;
> - the mover is matched to "its" electronics control board.

MAIN MEASUREMENT : Vertical

 calibration done at IP with SIOS interferometer (same sub nanometric resolution device used by Cedrat Cie) for -- BPM-AB Cedrat vertical movers system - BPM-C PI vertical movers system (Mirror for interferometry measurement set on BPM's top, therefore calibration is done for the tripod system, not for each movers)

OTHER MEASUREMENT : Horizontal calibration done at IP with Keyence lasermeter (sub micrometric resolution).

Specs for measurements :

- 0.1 V step then 0.5 V for 2017.05 campaign
- 3 sec holding time (same for PI factory calibration)

5 Hz acquisition

- 10 to 13 measurements kept at every steps (measurements when moving from step to another are rejected) For each setting voltage, 10 to 13 measurements are displayed on the following plots (i.e. not error bar).
(1) purpose : new calibration needed due to movers aging? (2) purpose : lack of data for a suitable statistical analysis (4 cycles \rightarrow more than 150)

Vertical mover tripod system - residual (4 cycles)

(Residual $=$ measured displacement minus calculated disp. from linear fit)

Cedrat - Cycle 1 to 4 - Residual vs Setting voltage

a) At full range, smaller gain standard deviation for PI than Cedrat (0.0063 vs $0.0203 \mu \mathrm{~m} / \mathrm{V}$), but lack of data to be relevant (only 4 cycles).
b) Cedrat : Accident in the ranges -1 to -0.8 V and 6.4 to 7 V . With reduced range (i.e. previous ranges excluded), tripod system raw accuracy is $-2.1 /+1.9 \mu \mathrm{~m}$ (max deviation from linear fit) \rightarrow accuracy $\sim 1 / 120$ of stroke (reduced stroke) when $\sim 1 / 700$ is expected (for a single actuator) !
c) PI: Good accuracy for the tripod system : $-0.28 /+0.32$ $\mu \mathrm{m}$ for full range operation, reduced to $-0.14 /+0.27 \mu \mathrm{~m}$ when rejecting 0 to 0.5 V (warm up?) and 9.5 to 10 V (shift) \rightarrow accuracy $\sim 1 / 1000$ of stroke as expected.

Vertical movers calibration

(non-linear fit + slightly reduced stroke) Residual from cubic polynomial fit

2016.10's plots

Cycle 1 to 4 - Cedrat residual vs Setting voltage

	Cedrat polynomial fit coeffs $(-1$ to 7 to -1 V travel ; calculated without -1 to 0.4 V and 6.4 to 7 V data)			
	$\mathrm{a}\left[\mathrm{nm} / \mathrm{V}^{\wedge} 3\right]$	$\mathrm{b}\left[\mathrm{nm} / \mathrm{V}^{\wedge} 2\right]$	$\mathrm{c}[\mathrm{nm} / \mathrm{V}]$	$\mathrm{d}[\mathrm{nm}]$
4 ups	9.63397	222.106	29013.5	29234.1
4 downs	6.52030	198.9	29255.2	29594.1

With cubic polynomial fit and reduced stroke (see in red), Cedrat and PI movers are almost in the same range of accuracy (roughly $+100 /-200$ nm or $+200 /-100 \mathrm{~nm}$)

	PI polynomial fit coeffs (0 to 10 to 0 V travel ; calculated without 0 to 0.4 V and 9.6 to 10 V data)			
	a [nm/V^3]	$\mathrm{b}\left[\mathrm{nm} / \mathrm{V}^{\wedge} 2\right]$	c [nm / V]	d [nm]
4 ups	-1.63945	21.8446	-30055.1	-293.296
4 downs	-0.49394	-2.33170	-29919.0	-272.911

Vertical calibrations (cubic polynomial fit) - analysis

```
2016.10's campaign
```

Cedrat's systematic error can be dramatically reduced with cubic polynomial fit. In this case, Cedrat is close to the Pl's accuracy level, especially with short range around midstroke.

Full range with rejected data :

$\mathrm{PI} \rightarrow$ raw rel. accuracy ~ 8×10^{-4} ($200 \mathrm{~nm} / 270 \mu \mathrm{~m}$)
Cedrat \rightarrow raw rel. accuracy ${ }^{\sim} 1.1$ to 1.7×10^{-3} (200 or $300 \mathrm{~nm} / 174 \mu \mathrm{~m}$)
Raw accuracy $=$ no statistical analysis (only 4 cycles taken)

Around mid-stroke, 2 V range :
Lack of data for PI (only 2 cycles), but both Cedrat and PI tend to be within a band of $+/-60 \mathrm{~nm}$ for the same reduced stroke ($60 \mu \mathrm{~m}$).
\rightarrow raw rel. accuracy ${ }^{\sim} 10^{-3}(60 \mathrm{~nm} / 60 \mu \mathrm{~m})$

Vertical movers stability at mid stroke (see "living movers")

 (at LAL in June 2013 [100 sec] vs at KEK in Oct. 2016 [200 sec])

Cedrat vertical mover tripod system - residual (150 cycles)

In 2016.10 (~30 min data acq.), with cubic polynomial fit and reduced stroke, Cedrat accuracy is roughly $+100 /-200 \mathrm{~nm}$. In 2017.05 (~210 min data acq.), drifts along 150 lead to a 100 times lower accuracy (max residual) [statistical error plot missing showing residual drift, i.e. not a gaussian]

PI vertical mover tripod system - residual (211 cycles)

In 2016.10 (~ 40 min data acq.), with cubic polynomial fit and reduced stroke, Pl accuracy is roughly $+200 /-100 \mathrm{~nm}$. In 2017.05 (~ 420 min data acq.), drifts along 150 lead to a 100 times lower accuracy (max residual) [statistical error plot missing showing residual drift]

And then, the upstream Cedrat mover showed malfunction during 2017.05 campaign

\rightarrow Unappropriated feedback regarding setting value meaning strain gauges (mounted on piezo elts stacks) failure (unglued for instance), or SG electronics failure, or piezo mover broken (piezo elts stacks or more probably the "amplification" frame according manufacturer).
\rightarrow Cross checks showed the upstream mover's SG electronics works fine (with other movers) and later on piezo mover SG resistance was found at expected value by Tauchi-san.

Therefore a piezo mover failure is the most likely situation, to make the ATF2 IP-BPMs displacement-scanning system functional again, we plan to change the upstream Cedrat mover by a new one, and recalibrate the whole system (i.e. the 2 tripod systems) during the 2018.03.26 to 2018.04.06 period

Planning and tasks process for the 2018.03.26 to 2018.04.06 period

Reaching and changing the upstream Cedrat mover

Conclusion

1. Campaign of measurements done too quickly in Oct. 2016. More data should have been gathered (\rightarrow statistical study, warm up effect analysis).
New campaign of measurements in May 2017 but a lot hardware issues
2. Upstream Cedrat mover to be change and its electronics to be tuned
3. Complete vertical calibrations plus stability at mid strike to be done ; need to understand origin of drift seen with interferometer
4. Current lateral and vertical alignment should be unchanged
