Beam halo study using YAG/OTR monitor

R. Yang, T. Naito, M. Bergamaschi, A. Aryshev, S. Wallon and P. Bambade

2018-03-22

Vertical beam halo study with DS

- Vertical beam halo: elastic BGS in the DR Good agreement between simulation and DS data + vacuum dependence
- Hor. beam halo: under investigation
 Not BGS processes, chromaticity & aberration in FF or secondary particles

Evaluation of Beam Halo from Beam-Gas Scattering at the KEK-ATF*

R. Yang^{1,*}, T. Naito^{2,3}, S. Bai⁴, A. Aryshev^{2,3}, K. Kubo^{2,3}, T. Okugi^{2,3}, N. Terunuma^{2,3}, D. Zhou^{2,3}, A. Faus-Golfe¹, V. Kubytskyi¹, S. Liu⁵, S. Wallon¹ and P. Bambade¹
¹LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
²High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
³School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, Japan
⁴Institute of High Energy Physics, Beijing, China
⁵Deutsches Elektronen-Synchrotron, Hamburg, Germany
• Result submitted to PRAB (Dated: March 14, 2018)

1. Visualisation of transverse beam halo

Transverse beam profile by YAG

- DR vacuum: adjusted by on/off SIP
- Ver. halo
 - increases for the worsened vacuum
- Ver. emittance
 - diluted for bad vacuum (BGS)
- Hor. halo
 - higher than BGS prediction
 - insignificant vacuum dependence
- Consistent with DS measurements!

Horizontal halo vs. EXT kicker timing

- Field of EXT kicker might not be imperfect!
- 4 EXT timings, $\triangle t > 50$ ns
- Ver. and hor. dispersion have been corrected
- Hor. halo level doesn't change too much!
- EXT kicker timing —> Asymmetry hor. profile

Horizontal halo vs. QF21 current

- Varying QF21 current, QD20 = 26 A
- η_x< 10 mm
- Beam sharp is modulated by QF21
- Horizontal halo and its asymmetry are also related to optical focusing!
- Asymmetric hor. profile might be induced by EXT kicker field and optical focusing!

[1] Initial currents of QF21/QD20 are 55.6A/46.7 A

ATF Project Meeting, Orsay, France

2. Visualisation of momentum tail

Momentum distribution visualisation

- Motivation:
 - Momentum tail is unknown (at ATF or other ring)
 - Hor. halo might be enhanced due to momentum tail via η_x in the DR
- Method:
 - Adjust η_y by tuning QS1X/QS2X with specific ratio (to minimum βy growth)
 - Ver. profile <— momentum distribution if η_y is large enough (>150 mm)
- Ratio between QS1X/QS2X is determined by the increment of βy when tuning QS1X or QS2X solely

Momentum distribution visualisation

- QS1X/QS2X ratio = 1:0.5 (1:0.7)
- *xy* coupling (tilted beam) is suppressed (QK2X/QK4X knob)
- η_y raises up to 200 mm
- Vertical beam size is determined by dispersion/energy spread when($\eta_y > 100$ mm)
- Tail part is determined by energy spread for $\eta_y > ??$

Momentum distribution visualisation

Vacuum dependence of momentum distribution

• For $\eta_y = 200$ mm:

- Ver. halo is higher than BGS prediction by factor ~ 10

- No significant vacuum dependence for ver. profile (momentum distribution)
- First observation of momentum distribution!
- Mechanism of momentum tail: Touschek scattering + Brems.??

Momentum tail from Touschek scattering?

• The scattering rate is estimated using Piwinski formulas

$$R \propto \left\langle \frac{N_e^2}{\sigma_s \sqrt{\sigma_x^2 \sigma_y^2 - \sigma_\delta^4 \eta_x^3 \eta_y^2}} \mathscr{F}(\beta \delta_m, B_1, B_2) \right\rangle$$

• Momentum deviation in the tail region (assuming 0.35% to 1.2%)

 Population of particles scattered into tail region increase with respect to beam intensity

Momentum tail from Touschek scattering?

- Hor. and Ver. emittance reachs equilibrium after 100 ms and 160 ms
- Long. emittance decreases to the min. and then increases again due to IBS
- Small scattering rate at 120 ms and higher scattering rate at 200 ms and 300 ms?

15

13

Experiments in March; data analysis is on going!

2e9 4e9

7e9

300

Summary

- Transverse beam halo and the momentum tail have been measured using YAG monitor
 - Trans. beam halo is consistent with DS data
 - Asymmetric hor. distribution can be due to EXT kicker or focusing
- The first observation of the momentum tail has been achieved
 - Formation of momentum tail has been studied experimentally
 - Monte Carlo simulation of IBS and Touschek scattering is also underway
- Intensity dependence and the correlation with storage time of momentum tail have been measured
 - Data analysis is on going!

Thank you for your attention!

Many thanks to ATF collaboration and support from KEK!