

Automatic Colorization for Jet Clustering (This is test)

Masakazu Kurata

KEK

02/03/2018

Introduction Jet clustering is one of the main key to obtain better physics results

- Physics results are strongly limited by mis-clustering
- To obtain correct jets leads to improve the mass resolution of the resonances

Present jet clustering is far from good tool for reconstructing jets

e.g. Higgs self-coupling: ~40% improvement if perfect!

Staging: even at 250GeV, clustering is very important

Separation of ZH/ZZ/WW in hadronic events

One of the problem is how we can absorb the difference between events

- For very high efficiency, from NN view, all the events look "exception"...→infinite number of nodes & infinite number of events is necessary?
- CNN can relatively absorb position shift & distortion of shape
 - So, CNN meets this?
- One idea: "Automatic Colorization" using CNN
 - Gray scale \rightarrow Color

3

Now, trying to do that

or

- We can estimate the region of what we want to know
- This calls "semantic segmentation"
- Example:

Can we apply these kinds of techniques for jet clustering?

Use CNN for automatic colorization

For jet clustering, we need the overall and local information for each event

- Where is the large energy located?
- Correlation between neighbors or large energy area?
- Using CNN, we will extract both of the features
 - I don't want to mention about the details of CNN
 - Using u-network
 - Already \sim_{30} layers in CNN!

trial

Using energy map of each event, estimate color of each track

• $ZHH \rightarrow (qq)(bb)(bb) \rightarrow 6jets$

Over fit check

This is still test stage, so cannot check overfitting well
Just estimate using loss function(small is better):

$$= -\frac{1}{N} \sum_{jet} \sum_{track} \frac{E_{track}}{E_{jet}} Logy_{track}$$

If no overfitting, L is almost same between test and train

Num. of training events	Loss Train	Loss Test
140	0.185	1.78
4000	0.464	0.725
9000	0.571	0.654

Over fitting will vanish if num. of training events is O(10000)
But, performance gradually degrades
So need to optimize the network size to recover the performånce

Examples(good?)

Examples(bad?)

Prospects

From semantic segmentation point of view, we can estimate probability of each point

Can create heat map for each jet

Prospects

It is expected that each minijet move inside the jet boundary which is estimated from CNN

- From Deep learning side, there are some points for improvement
 - Optimize network and hyper parameters
 - Using(adding?) Conditional Random Field
 - 1-2% improvement will be seen in other tasks
 - But now I'm trying to understand
 - Can find color flow? \rightarrow future plan