Study of search technique for anomalous couplings between top quark and gauge particles  $Z/\gamma$  using top pair creation at the ILC

Tohoku University

Yo Sato

## Outline

#### □ Introduction

- **G**oal of this study
- □ Setup of simulation
- □ Signal Reconstruction
- Analysis
- □ Summary

## Introduction

The  $ttZ/\gamma$  couplings Previous study at the ILC Full angular analysis The  $ttZ/\gamma$  couplings are important probes for new physics (e.g.) Predicted deviation of *F* or *g* from SM is ~10 % in composite models.

The measurement of the  $ttZ/\gamma$  couplings is difficult in hadron colliders. Energy of current lepton colliders are not enough for  $t\overline{t}$  creation.

 $\rightarrow$  Study at a future lepton collider is needed !

### Previous study at the ILC

ILC (International Linear Collider)

The most mature project of a future  $e^-e^+$  collider

Clean data & 250-500 GeV & Polarized beam

 $\rightarrow$  Suitable for the  $ttZ/\gamma$  measurement

Previous study (Eur.Phys.J. C75 (2015) no.10, 512)

-330

Signal : Semi-leptonic process at 500 GeV  $e^-e^+ \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow bq\bar{q}\bar{b}l\nu$ 

Beam polarization :  $(P_{\rho^{-}}, P_{\rho^{+}}) = (\mp 0.8, \pm 0.3)$ 

Observables :  $A_{FB}$ ,  $\sigma$ 

Parameters : F (form factor) or g (coupling constant)





## Full angular analysis



The previous study used  $A_{FB}$ ,  $\sigma$ Robust and countable observables Obtained from  $e^-e^+ \rightarrow t\bar{t}$  process

Decay process has also the information of the *ttZ/γ* couplings
Top quark decays before hadronization
Angular distributions of decay particles depend on the spin of top quark

Full angular analysis gives intrinsic higher sensitivities

Introduction

# **Goal of this study**

Goal of this study

### Goal of this study

#### Goal of this study

Development of the search technique for the anomalous  $ttZ/\gamma$  couplings with the full angular analysis based on the ILD full simulation.

- Reconstruction of the di-leptonic process;  $e^-e^+ \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow bl^+\nu\bar{b}l^-\bar{\nu}$ 
  - The most observables can be obtained

Analysis with the matrix element method Analysis with the binned likelihood method



# **Setup of simulation**

Parameter setup Signal and major backgrounds Event generator : WHIZARD, Pythia

Detector simulation : Mokka, Marlin

Parameter setup is based on the TDR and DBD.

| Center-of-mass energy    | $\sqrt{S}$               | 500 GeV                                     |
|--------------------------|--------------------------|---------------------------------------------|
| Beam polarization        | $(P_{e^{-}}, P_{e^{+}})$ | (-0.8, +0.3) / (+0.8, -0.3)<br>Left / Right |
| Integrated luminosity    | L                        | 250 fb <sup>-1</sup> / 250 fb <sup>-1</sup> |
| Top quark mass           | $m_t$                    | 174 GeV                                     |
| Other physics parameters |                          | Consistent with SM-LO                       |

## Signal and major backgrounds

#### Signal : $e^-e^+ \rightarrow b\bar{b}\mu^-\mu^+\nu\bar{\nu}$

We focus on the process of *W*'s decay to  $\mu\nu_{\mu}$ The most accurate to be reconstructed in the di-leptonic decay process

Includes the single top production, *ZWW* etc. These are the irreducible background

#### Major backgrounds

$$e^-e^+ \rightarrow q\bar{q}l^-l^+$$
 (mainly  $e^-e^+ \rightarrow ZZ \rightarrow q\bar{q}l^-l^+$ 

$$e^-e^+ \rightarrow b\bar{b}l^-l^+\nu\bar{\nu}$$
 (except for  $b\bar{b}\mu^-\mu^+\nu\bar{\nu}$ )

They can have 2 b-jets and 2 isolated muons



```
Single top production
```



## **Signal Reconstruction**

Reconstruction process Algorithm of the kinematical reconstruction Combination of mu and b-jet Event selection

#### **Reconstruction Process**

1. Selection of  $\mu^+$  and  $\mu^-$ 

 $\mu$  from W decay are isolated from jets

2. Jet clustering and b-tagging

Cluster jet particles corresponding  $b, \overline{b}$ 

Assess the "b-likeness" from the vertex information (such as # of vtx. and distance between IP and vtx.)



#### Pre-selection

Events not having  $\mu^+$ ,  $\mu^-$  and b-jets are rejected.

| <b>Signal</b><br>bbμμνν | All bkg.                                                             | qqll                                                  | bbllvv                                                                  |
|-------------------------|----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|
| 2837                    | 8410633                                                              | 91478                                                 | 8491                                                                    |
| 2618                    | 327488                                                               | 13827                                                 | 381                                                                     |
| 2489                    | 4143                                                                 | 2943                                                  | 358                                                                     |
|                         | Signal           bbμμvv           2837           2618           2489 | Signal<br>bbμμννAll bkg.28378410633261832748824894143 | Signal<br>bbμμννAll bkg.qqll2837841063391478261832748813827248941432943 |

Introduction

#### **Reconstruction Process**

#### 3. Kinematical Reconstruction

 $\nu, \bar{\nu}$  are not detectable at the ILD detector.

To recover them, impose the following constraints

- Initial state constraints :  $E_{\text{total}} = 500 \text{ GeV}, \vec{P}_{\text{total}} = \vec{0} \text{ GeV}$
- Mass constraints :  $m_{t,\bar{t}} = 174 \text{ GeV}, m_{W^{\pm}} = 80.4 \text{ GeV}$

 $\gamma$  of the ISR/Beamstrahlung deteriorates the initial state condition. Assume the photon is along the beam direction (z-axis).





Introduction

### Algorithm of the Kinematical Reconstruction

Introduce 4 free parameters :  $\vec{P}_{\nu}$ ,  $P_{\gamma,z}$ 

 $\vec{P}_{\overline{\nu}}$  can be computed using the initial momentum constraints

$$\vec{P}_{\overline{\nu}} = -\vec{P}_{\text{vis.}} - \vec{P}_{\nu} - \vec{P}_{\gamma}, \qquad \left(\vec{P}_{\text{vis.}} = \vec{P}_{b} + \vec{P}_{\overline{b}} + \vec{P}_{\mu^{+}} + \vec{P}_{\mu^{-}}\right)$$

Define the likelihood function :

$$L_0(\vec{P}_{\nu}, P_{\gamma,z}) = BW(m_t)BW(m_{\bar{t}})BW(m_{W^+})BW(m_{W^-})Gaus(E_{\text{total}})$$

To correct the energy resolution of b-jets, add 2 parameters,  $E_b$ ,  $E_{\bar{b}}$ , with the resolution functions to  $L_0$ :

 $L(\vec{P}_{\nu}, P_{\gamma,z}, E_b, E_{\bar{b}}) = L_0 \times Res(E_b, E_b^{\text{meas.}})Res(E_{\bar{b}}, E_{\bar{b}}^{\text{meas.}})$ Define  $q(\vec{P}_{\nu}, P_{\gamma,z}, E_b, E_{\bar{b}}) = -2 \log L + \text{Const.}$ (scaled as the minimum of each component is equal to 0)

Signal Reconstruction

## Combination of $\mu$ and b-jet

Choice of a combination of  $\mu$  and b-jet

There are two candidates for the combination

Select one having smaller q, defined as  $q_{min}$ Ratio of the correct combination is ~83%

#### Difference in the $\cos \theta_t$ distribution

Correct : OK !

□ Miss : Disagree with the MC truth.

Need to estimate the effects of the miss combination for the analysis.



Signal Reconstruction



### **Event Selection**

#### Pre-selection has already been applied

#### Quality cut :

 $q_{\min}$  means the quality of reconstruction. Useful to suppress the backgrounds.

Criteria is optimized for the significance,

$$S = \frac{N_{\rm signal}}{\sqrt{N_{\rm signal} + N_{\rm background}}}$$



| Left Polarization<br>Cut Criteria | <b>Signal</b><br>bbμμνν | tt   | except<br>for <i>tt</i> | All bkg. | qqll  | bbllvv |
|-----------------------------------|-------------------------|------|-------------------------|----------|-------|--------|
| No cut                            | 2837                    |      |                         | 8410633  | 91478 | 8491   |
| Pre-selection                     | 2489                    | 2215 | 273                     | 4143     | 2943  | 358    |
| Quality cut ( $q_{\min} < 11.5$ ) | 2396                    | 2103 | 195                     | 624      | 258   | 312    |

(\*) Separate signals into  $t\bar{t}$  and the other process from WHIZARD information Signal Reconstruction

# Analysis

The amplitude of the di-leptonic process Expansion of the amplitude at SM values Binned likelihood method Comparison with Previous study

### The amplitude of the di-leptonic process

The amplitude of the di-leptonic process is a function of 9 angles.

 $|M|^{2}(\cos\theta_{l},\cos\theta_{W}^{+},\phi_{W}^{+},\cos\theta_{W}^{-},\phi_{W}^{-},\cos\theta_{l}^{+},\phi_{l}^{+},\cos\theta_{l}^{-},\phi_{l}^{-};F)$ 



Rich observables can be computed

It is difficult to handle the 9-dimention phase space

Analysis

#### Expansion of the amplitude at SM value

Expand the amplitude in the form factors, *F*, at SM value :

$$|M|^{2}(\Phi;F) = \left(1 + \sum_{i} \omega_{i}(\Phi)\delta F_{i} + \sum_{ij} \widetilde{\omega}_{ij}(\Phi)\delta F_{i}\delta F_{j}\right)|M^{SM}|^{2}(\Phi;F^{SM})$$
$$\omega_{i} = \frac{1}{|M|^{2}(\Phi)} \frac{\partial |M|^{2}(\Phi)}{\partial F_{i}}\Big|_{\delta F=0}, \widetilde{\omega}_{ij} = \frac{1}{|M|^{2}(\Phi)} \frac{\partial^{2} |M|^{2}(\Phi)}{\partial F_{i}\partial F_{j}}\Big|_{\delta F=0}, \delta F_{i} = F_{i} - F_{i}^{SM}$$

 $\omega, \widetilde{\omega}$  are the optimal variables for the form factors

(\*) Matrix element method

Use all  $\omega$  and  $\tilde{\omega}$  with the unbinned likelihood method.

It is difficult to involve the experimental effects to the likelihood function

### Binned likelihood method

Use only ω ignoring the second order of δF
Prepare ω distribution with large full simulation
Fit the simulation distribution to a binned "data"(\*) using the following χ<sup>2</sup>

$$\chi^{2}(\delta F) = \sum_{i=1}^{N_{bin}} \left( \frac{n_{i}^{\text{Data}} - n_{i}^{\text{Sim.}}(\delta F)}{\sqrt{n_{i}^{\text{Data}}}} \right)^{2}$$

(\*) The "data" is also obtained from the full simulation. It will be replaced for real data.

We have done single parameter fit for each *F*.

(e.g.) 
$$\delta \tilde{F}_{1V}^{\gamma} = -0.0038 \pm 0.0071$$
  
C.L. = 55.2 %

#### Consistent with SM (input) value

Introduction



## Comparison with previous study

| Form factor       | Previous (1)<br>semi-lep | This study<br>bbμμνν |
|-------------------|--------------------------|----------------------|
| $F_{1V}^{\gamma}$ | $\pm 0.002$              | $\pm 0.0071$         |
| $F_{1V}^Z$        | $\pm 0.003$              | ±0.0128              |
| $F_{1A}^{\gamma}$ |                          | ±0.0162              |
| $F_{1A}^Z$        | $\pm 0.007$              | ±0.0262              |
| $F_{2V}^{\gamma}$ | $\pm 0.001$              | $\pm 0.0058$         |
| $F_{2V}^Z$        | $\pm 0.002$              | ±0.0102              |

| Form factor         | Previous (2)<br>semi-lep | This study<br>bbμμνν |
|---------------------|--------------------------|----------------------|
| $ReF_{2A}^{\gamma}$ | $\pm 0.005$              | ±0.0238              |
| $ReF_{2A}^Z$        | $\pm 0.007$              | $\pm 0.0351$         |
| $ImF_{2A}^{\gamma}$ | $\pm 0.006$              | ±0.0223              |
| $ImF_{2A}^Z$        | $\pm 0.010$              | ±0.0394              |

Difference of  $N_{signal}$  is

$$\frac{N_{\text{semi-lep}}}{N_{bb\mu\mu\nu\nu}} \simeq \frac{\frac{6}{9} \times \frac{2}{9} \times 2}{\frac{1}{9} \times \frac{1}{9}} = 24$$

 $\rightarrow$  A factor of 5 can be expected

#### Consistent with the previous study

If this method is applied for the semi-leptonic process, it's possible that the precision will be improved

(\*) Although some results of previous study are from multi-fit, the correlation is small.

(1) Eur.Phys.J. C75 (2015) no.10, 512

(2) arXiv:1710.06737 [hep-ex].

Analysis

# **Summary**

Summary

#### Summary

- Development of the search technique for the anomalous  $ttZ/\gamma$  couplings with full angular analysis based on the ILD full simulation.
- Reconstruct full kinematics of the di-leptonic process (especially  $\mu\mu$ ) from the kinematical reconstruction.
- Estimate the statistical errors from the binned likelihood fit for the  $\omega$  distribution and confirm the validity of this method.
- The precision is consistent with the previous study and there's a possibility of improvement if this method is applied for the semi-leptonic state.