Test beam data analysis

Felix Sefkow, <u>Katja Krüger</u> *DESY*

E-JADE Analysis meeting Uni Tokyo, 23.2.2018

Plan

- Analysis strategy
- Basic hardware checks
- Electromagnetic performance
- Hadronic performance
- Algorithms and shower physics

General strategy

- For high level analysis physics and algorithms we must ensure that the detector is understood
- "Understood" means that we are able to model it and reproduce its characteristics by means of simulations
- Electromagnetic processes can be modelled with less uncertainty than hadronic showers
- 1st step: tests with noise, LEDs and muons
- 2nd step: tests with electrons
- 3rd step: hadrons
- Only then: higher level studies

Noise

- So-called pedestal data
 - from baseline of the pulse on an oscilloscope
- Method: random triggers
 - in new prototype: triggers by neighbouring cells in same ASIC
- Mean value of pulse height: zero point of energy scale
 - pedestal to be subtracted from all amplitudes from now on
 - otherwise ratios between amplitudes, e.g. signal / noise, cannot be formed and calibrations not applied
- Width of pulse height distribution:
 - very small: dead channel
 - very large: **noisy** channel
 - look at distribution of widths of distributions to find out what is small and what is large
- Exclude dead and noisy channels from all subsequent steps

LED data

- Low intensity LED light to observe single photo-electron spectra
 - distance between peaks is proportional to gain of SiPM
- Due to spread in LED light intensity, need to scan amplitudes of LED calibration pulse voltage (VCALIB) in oder to have useful amplitude in each channel
- Investigate distribution of results and check for outliers
 - bad fits
 - noisy channels
 - SiPM problems
- Optimise procedures and define treatment of outliers
 - default values or exclusion but do not ignore them!
- LED data with larger amplitudes provide inter-calibration between low gain and high gain of amplifier
 - switches automatically for each hit, according to signal amplitude
 - in special runs can read both low gain and high gain simultaneously
 - not the same as inter-calibration of physics prototype modes, which had different pulse lengths
 - procedures still under development: look out for surprises

Muon data

- Muons (minimum ionising particles) define the energy scale of each individual read-out cell
- After calibration the most probable value of the MIP pulse height distribution should be 1 by construction
- Easier said than done:
 - for cosmics the pulse height depends on the track length in the cell, i.e. on the incident angle
 - for radio-active sources, on the energy spectrum of the the beta decay and on the trigger condition
 - for beams, there are
 - contaminations by hadrons which induce showers
 - delta rays and secondary particles from the absorber
- For beam data the event selection has to be optimised for statistics versus purity
- Guidance from simulation can help to judge how close the situation is to idealised conditions

Simulation

- Ingredients (detector):
 - geometry
 - material description
 - modelling of electronics effects
- Cross-checks
 - the Monte Carlo should be calibrated: MPV(MIP) = 1
 - the geometry should be checked using event displays
- Ingredients (beam):
 - particle type
 - energy (momentum)
 - material upstream
 - transverse beam profile
 - for muons only affects distribution of hits, for electrons and hadrons also amplitudes

MIP calibration and light yield

- Obtain MIP calibration values (ADC counts per MIP_{MPV})
- Optimise procedure and define treatment of outliers
 - exclude or use default
- Extract light yield = MIP / gain = no. of pixels per MIP
 - check for **outliers** again there should not be any
- If MIP fits do not work, the average LY provides a better guess than the average
 - i.e. MIP_{default} = <LY> * gain better than MIP_{default} = <MIP>
 - why?
- If calibration done, re-run to check **convergence**
 - result may change due to re-calibration of thresholds and impact on track selection
 - do not forget to apply proper calibration and thresholds in event display
- Now we have a tracker. Let us make a calorimeter.

Electrons

- Unfortunately also electron beams are not 100% pure
 - and Cerenkov based particle ID is not 100% efficient
- Scan the events, look for
 - contaminations by hadrons and muons
 - additional particles in the beam line
 - soft garbage
- Conceive cuts to suppress unwanted contributions
 - define **fiducial volume**: do not include more cells than necessary for measuring electrons
 - reject events using all available information,
 - topology, outer and rear part
- Verify with simulations that the cuts do not bias response and resolution
 - i.e. there is no effect on pure electrons
 - indirectly select what you want

Electron observables

- All to be compared with simulations
- Response = energy in units of MIPs = sum over cells in fiducial volume
 - mean as expected? stable in time? independent of impact point?
 - use centre of gravity
 - distribution has no unexpected tails or shoulders?
- More detailed look: longitudinal profile
 - sensitive to dead channels and mis-calibrations
 - contaminations
- Even more details: **cell energies**
 - careful! this depends rather strongly on impact point
 - use either tight cuts on c.o.g. or MC with accurately tuned beam profile
- Reproducing cell energy spectra is hard, but on the other hand, if they match, everything else does, too
 - radial profiles last
- For a first pass, concentrate on shower centre
 - deviations here spoil everything else
- Apart from material, calibration, beam profile, here saturation corrections become relevant
 - and for the new prototype also the inter-calibration

Linearity and resolution

- If everything OK up to here, we can analyse performance
- Linearity: mean response vs beam energy
- Sensitive to
 - remaining impurities
 - imperfect saturation correction
 - noise and threshold (positive and negative offsets)
- Resolution: width of response distribution
- Sensitive to
 - noise (at low energies)
 - material (and electronics) description at intermediate energies
 - mis-calibrations, instabilities, and not properly modelled hardware effects (inhomogeneities) at high energies
 - parameters are inter-correlated
- Now we have a calorimeter and can do physics

Hadrons

- Hadron response depends on particle type
 - higher for pions than for protons
 - lower available energy for p due to baryon number conservation
 - anti-p?
- Simulated hadron response is model-dependent
 - 5%, locally (profiles) up to 20%
- Leakage introduces
 - non-linearity (negative; "saturation")
 - asymmetric response: carefully devise fit and extraction of "the" response
- Non-compensation (e/pi > 1) introduces (positive) non-linearity
 - effect is small for AHCAL, but not zero
- In principle: response is non-linear
- In principle: **resolution** does not follow $1/\sqrt{E}$ behaviour
- **Shower start** point:
 - distribution to check material and possible problems (contamination, noise)
 - profiles from start allow for more refined tests
- Be aware that cells and regions enter which were not validated with electrons
 - that is why MIPs need to be checked so carefully

Timing Analysis

- still under development, so strategy less well established than for amplitude analysis
- idea is the same, but cannot use LED information anywhere
- procedure:
 - first calibration with muons (instantaneous, small amplitudes, few hits)
 - then cross-check with electrons (instantaneous, larger amplitudes, many hits)
 - watch out for unexpected effects! (e.g. many hits on a chip lead to shift and broadening of time distribution in Spiroc2B)
 - apply to hadrons
- effects we know we need to check/correct
 - non-linearity of TDC ramp
 - time walk
 - dependence on number of hits on a chip

Traps and Pitfalls

- AT vs. ET: very few parameters can be extracted from external trigger runs (LED) and directly applied in auto-trigger data (beam)
 - pedestal is not the same
 - memory cell dependence (?)
 - inter calibration ?
- memory cell dependence
 - it's there for many parameters (e.g. pedestal), it's a new feature for technological prototype → it's a new feature in the software
- "features" of the readout ASIC
 - always beware of unexpected effects!
 - in order to minimise number of parameters to determine in calibration, carefully evaluate what depends on
 - chip
 - ramp number (odd or even BXid)
 - channel
 - memory cell

Higher levels

- Software compensation
 - energy
 - topology
- Two-particle separation
 - new Pandora
 - ARBOR
- Electron-pion separation
- Timing analysis
 - shower model validation
 - shower parameters vs time cuts
 - use of timing in particle flow

Technicalities

- all data will be uploaded on the grid, directly reachable from NAF and BIRD cluster at DESY
 - needs DESY computing account (not a problem)
 - alternative from Tokyo? needed?
- running the reconstruction needs the database
 - located on a server at DESY
 - is reachable from restricted number of locations outside DESY
 - → check if it works from Tokyo
 - snapshot can be written to file, but then changes cannot be fast and easily made available to everyone

Summary

- A calorimeter is not black magic
- Everything can be checked and understood
- There are lots of interesting physics to come
- Muon and electron test beams form the basis of all studies
- The technological prototype has a number of new features not present in the physics prototype, so software is maybe not yet adequate everywhere
 - memory cell dependence
 - active temperature compensation
 - ...