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Tuning

Tuning Set-up and Imperfections

The tuning exams the ideal lattice design against realistic
machine imperfections

Error Unit Oerror

e~ & e Treatment - Independently
BPM Transverse Alignment [pem] 10

BPM Roll [prad] 300
BPM Resolution [nm] 10
Magnet Transverse Alignment  [um] 10
Magnet Roll [prad] 300
Magnet Strength [%] 0.01
Ground Motion [s] 0.02

Imperfections are randomly distributed on 100 different
machines before applying the tuning algorithm=-
@ Beam-Based Alignment Techniques
@ Linear Knobs (Transverse sextupole displacements)
@ Non-linear Knobs (Strength variation sextupoles)
@ Figures of merit: Orbit and Luminosity
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Tuning w/ only Static Imperfections
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90 % machines (e—, e™) reach 97 % of L, after 15000 £ meas
Slow convergence when £ > 80% =

is there any interplay with dynamic imperfections?

* https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.011003
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CLIC Stability Requirements

GM models L Stability
119 cMs —— 128 ATI6% 7
1e-12 Annecy ... B115%
model A s 12 B10 - stabilisation 108% %
fe-t4 o o R i A 4
T 1e-16 model B10 g T
s 8 Iy :
g 1e-18 £ 1 o
£ 1e-20 Ems
1e-22 &
1e-24 t
1e-26 095 T —
0.1 1 10 100 o 10 Time [s] s e

GM counter-measures:

@ Active Stabilization System

@ Orbit Feed-Back
@ Pre-isolator
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Stabilization Systems

[*) Stab|l|zat|0n Fl|tel’ type o Pre_isolator:
o V2 @ 1: simple version F. Ramos
o v3 . etal.
@ v3+Orbit Feed-Back @ 2: mechanical feedback B.
Caron et al.
_ 100 : : : : : @ 3: F. Ramos et al. including
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Results w/o Pre-isolator @ at IPAC18f
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~35000 effective

100 % machines >92 % of L
- measurements
58000 meas. u

20 hours (2s)

TE. Marin et al, "Tuning of CLIC-Final Focus System 3 TeV Baseline
Design Under Static and Dynamic Imperfections”, IPAC18 - MOPMF043
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Tuning Convergence Speed
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Fitted function: L[Lo](t) = ao * log(cy * t[h]) + Xo

8o = 0.069 £+ 0.002
Co =7.09+0.02

Xp = 0.731 £ 0.006
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Static & Dynamic

Pre-isolator

Motion of the FD quadrupoles un-correlated to the rest of the

beamlines
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L-signal jitter is larger than knob improvements

A bug was recently found in the lattice definition (girders
definition not compatible with pre-isolator) by C. Gohil



ML Algorithm

Machine Learning Approach

Latterly we have started a collaboration with Univ. of Malta to
use a different approach to tackle the tuning study, Machine
Learning

@ Data containing 100 machines and ~ 1500 parameters/machine
@ Neural network with 2 different layers

@ Data is split into 80% training and 20% testing

@ Five categories

@ Correctors @ Quadrupoles ® Quads& Mults
@ Bending @ Multipoles
First Results: D = Lored — Lituned
Category <D, > 6D,
[10%2ecm™2s~ '] [10%%cm™2s71]
Dipoles 419 2.2
Bendings 6.43 2.3
Quadrupoles 2.32 2.3
Multipoles 2.59 2.1

Quads& Mults 2.61 1.8
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Conclusions

Conclusions

CLIC FFS Tuning study has made a notable progress since
CDR (2012)

@ Imperfections:
@ item Most static imperfections included
@ Ground motion model for first time in tuning

@ Procedure: Implementation of second order knobs
@ Performance: x3 faster and slightly larger £

90% of machines reached a £ > 92%/Lyt

@ The evolution of £ over the range [60% to 100%] has been
obtained

@ Machine learning approach has been initiated but data set
needs to be extended to few (tens) thousands machines

fConvergence almost achieved
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Improvements

@ Correct implementation of the pre-isolator
\
Reduce jitter on lumi signal = improve performance
@ Increase time lapse between luminosity measurements to
few seconds (0.02s at the moment)
@ Realistic luminosity signal
@ Additional imperfections
@ Knobs (orthogonality and/or non-effective)
@ Tuning procedure: target smallest Oat o IP feed-back

@ Need to reduce the computational time
@ Particle tracking
@ Ground Motion evaluation
@ Luminosity calculation
@ Machine learning output? could be of use at
initial/intermediate/final tuning stages
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Future Work

Computational Time

® < L > should be computed as the average of £ over At
@ Bunch Population is linked to £ precision
@ Minimum 10° particles/beam required for last tuning scans
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Need to reduce computing time
@ Particle tracking
@ Ground Motion evaluation
@ Luminosity calculation
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Considered Signals

Signals generated by Guinea-Pig through collision of 10°
particles per beam

Luminosity
Number of Photons (beam?2)

Number of Pairs

°
°
°
°
°
® Number of Hadrons



Considered Signals

X - Linear Knobs (Mapclass)
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Considered Signals

Y - Linear Knobs (Mapclass)
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Considered Signals

Dispersion-Free-Steering Knobs - Octave
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Considered Signals

Normal Sextupoles - Non-Linear Knobs - Mapclass

/S [%]
S8y [%]

go L—22
01 2 3 4 5 6 7 8

Knob SKN4 [a.u]

10 ——————————— 110
100 /—”‘\ 100 1
o | o *
S [ 1 X 80f 1
= 70 F Lumi — 1 = Lum ]
& 60[ St —— | & 0r s
& 50 S2 ] o 60 s2 y
w0l S8 ] 50 [ 23 ]
o S5 f o R p— :
20 30
01 2 3 456 78 0 2 4 6 8 10

Knob SKN1 [a.u] Knob SKN2 [a.u]



Considered Signals

Skew Sextupoles - Non-Linear Knobs
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