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Tuning Set-up and Imperfections

The tuning exams the ideal lattice design against realistic

machine imperfections

Error Unit σerror

e−
& e+ Treatment - Independently

BPM Transverse Alignment [µm] 10

BPM Roll [µrad] 300

BPM Resolution [nm] 10

Magnet Transverse Alignment [µm] 10

Magnet Roll [µrad] 300

Magnet Strength [%] 0.01

Ground Motion [s] 0.02

Imperfections are randomly distributed on 100 different

machines before applying the tuning algorithm⇒

Beam-Based Alignment Techniques

Linear Knobs (Transverse sextupole displacements)

Non-linear Knobs (Strength variation sextupoles)

Figures of merit: Orbit and Luminosity



Tuning ML Algorithm Conclusions Future Work

Static

Tuning w/ only Static Imperfections
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90 % machines (e−,e+) reach 97 % of L0 after 15000 L meas

Slow convergence when L ≥ 80% ⇒

is there any interplay with dynamic imperfections?

∗https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.011003
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Static & Dynamic

DYNAMIC STUDY

GROUND MOTION
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Static & Dynamic

CLIC Stability Requirements

GM models L Stability

GM counter-measures:

Active Stabilization System

Orbit Feed-Back

Pre-isolator
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Static & Dynamic

Stabilization Systems

Stabilization Filter type
v2

v3

v3+Orbit Feed-Back
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Pre-isolator:
1: simple version F. Ramos

et al.

2: mechanical feedback B.

Caron et al.

3: F. Ramos et al. including

tilt motion
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Static & Dynamic

Results w/o Pre-isolator @ at IPAC18†

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90  100

L
 [

5
.9

 x
 1

0
3

4
c
m

-2
s

-1
]

# Machines

BBA
Linear knobs

Non-linear knobs
w/ Pre-isolator
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Luminosity Measurements [10
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]

Time [h]

Linear knobs
Non-linear knobs

w/o Pre-isolator

 0.9
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 45  50  55

100 % machines ≥92 % of L0

58000 meas.

≈35000 effective

measurements

20 hours (2s)

†E. Marin et al, "Tuning of CLIC-Final Focus System 3 TeV Baseline

Design Under Static and Dynamic Imperfections", IPAC18 - MOPMF043
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Static & Dynamic

Tuning Convergence Speed
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Fitted function: L[L0](t) = a0 ∗ log(c0 ∗ t[h]) + x0

a0 = 0.069 ± 0.002

c0 = 7.09 ± 0.02

x0 = 0.731 ± 0.006
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Static & Dynamic

Pre-isolator

Motion of the FD quadrupoles un-correlated to the rest of the

beamlines
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⇓

L-signal jitter is larger than knob improvements

A bug was recently found in the lattice definition (girders

definition not compatible with pre-isolator) by C. Gohil
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Machine Learning Approach

Latterly we have started a collaboration with Univ. of Malta to
use a different approach to tackle the tuning study, Machine
Learning

Data containing 100 machines and ≈ 1500 parameters/machine

Neural network with 2 different layers

Data is split into 80% training and 20% testing

Five categories

Correctors

Bending

Quadrupoles

Multipoles

Quads& Mults

First Results: DL = Lpred − Ltuned

Category < DL > δDL

[1032cm−2s−1] [1033cm−2s−1]

Dipoles 4.19 2.2

Bendings 6.43 2.3

Quadrupoles 2.32 2.3

Multipoles 2.59 2.1

Quads& Mults 2.61 1.8
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CONCLUSIONS
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Conclusions

CLIC FFS Tuning study has made a notable progress since

CDR (2012)

Imperfections:
item Most static imperfections included

Ground motion model for first time in tuning

Procedure: Implementation of second order knobs

Performance: x3 faster and slightly larger L

90% of machines reached a L ≥ 92%L0
‡

The evolution of L over the range [60% to 100%] has been

obtained

Machine learning approach has been initiated but data set

needs to be extended to few (tens) thousands machines
‡Convergence almost achieved
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FUTURE WORK
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Improvements

Correct implementation of the pre-isolator

⇓

Reduce jitter on lumi signal ⇒ improve performance

Increase time lapse between luminosity measurements to

few seconds (0.02s at the moment)

Realistic luminosity signal

Additional imperfections

Knobs (orthogonality and/or non-effective)

Tuning procedure: target smallest σ∗
e+

,e− , IP feed-back

Need to reduce the computational time
Particle tracking

Ground Motion evaluation

Luminosity calculation

Machine learning output? could be of use at

initial/intermediate/final tuning stages
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BACK UP
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Computational Time

< L > should be computed as the average of L over ∆t

Bunch Population is linked to L precision
Minimum 105 particles/beam required for last tuning scans
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Need to reduce computing time

Particle tracking

Ground Motion evaluation

Luminosity calculation
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Considered Signals

Signals generated by Guinea-Pig through collision of 106

particles per beam

Luminosity

Number of Photons (beam1)

Number of Photons (beam2)

Number of Coherent

Number of Pairs

Number of Hadrons



Tuning ML Algorithm Conclusions Future Work

Considered Signals

X - Linear Knobs (Mapclass)

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0  1  2  3  4  5

S
/S

0
 [
%

]

Knob 1x  [a.u]

Lumi
S1
S2
S3
S4
S5

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  0.5  1  1.5  2  2.5  3  3.5  4

S
/S

0
 [
%

]

Knob 2x  [a.u]

Lumi
S1
S2
S3
S4
S5

 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115

 0  0.5  1  1.5  2  2.5  3  3.5  4

S
/S

0
 [
%

]

Knob 3x  [a.u]

Lumi
S1
S2
S3
S4
S5

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0  1  2  3  4  5  6  7

S
/S

0
 [
%

]

Knob 4x  [a.u]

Lumi
S1
S2
S3
S4
S5



Tuning ML Algorithm Conclusions Future Work

Considered Signals

Y - Linear Knobs (Mapclass)
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Considered Signals

Dispersion-Free-Steering Knobs - Octave
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Considered Signals

Normal Sextupoles - Non-Linear Knobs - Mapclass
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Considered Signals

Skew Sextupoles - Non-Linear Knobs - Mapclass
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