CLIC FFS 2-beam Tuning with GM

Edu Marin¹ emarin@cells.es

¹CELLS, Barcelona, (SPAIN)

October 24th, 2018 LCWS 2018 - BDS Session **Univ. of Texas, Arlington (USA)**

Acknowledgements: A. Latina, J. Pfingstner, D. Schulte, R. Tomas and G. White

Tuning 0000000	ML Algorithm	Conclusions	Future Work
Outline			

- Static
- Static & Dynamic

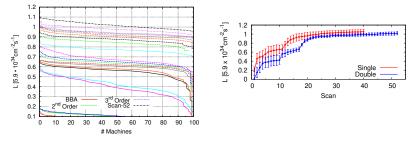
Tuning Set-up and Imperfections

The tuning exams the ideal lattice design against realistic machine imperfections

Error	Unit	$\sigma_{ m error}$
e ⁻ & e ⁺ Treatment	-	Independently
BPM Transverse Alignment	[µm]	10
BPM Roll	$[\mu rad]$	300
BPM Resolution	[nm]	10
Magnet Transverse Alignment	[µm]	10
Magnet Roll	$[\mu rad]$	300
Magnet Strength	[%]	0.01
Ground Motion	[s]	0.02

Imperfections are randomly distributed on 100 different machines before applying the tuning algorithm \Rightarrow

- Beam-Based Alignment Techniques
- Linear Knobs (Transverse sextupole displacements)
- Non-linear Knobs (Strength variation sextupoles)
- Figures of merit: Orbit and Luminosity


Tuning •oooooc ML Algorithm

Conclusions

Future Work

Static

Tuning w/ only Static Imperfections

90 % machines (e^- , e^+) reach 97 % of \mathcal{L}_0 after 15000 \mathcal{L} meas Slow convergence when $\mathcal{L} \ge 80\% \Rightarrow$

is there any interplay with dynamic imperfections?

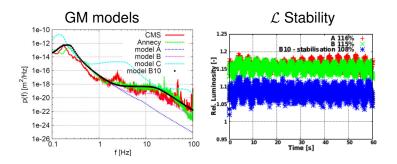
* https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.011003

Tuning 000000 Conclusions

Future Work

Static & Dynamic

DYNAMIC STUDY GROUND MOTION

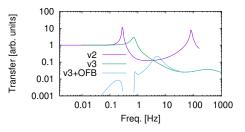

Tuning ○○●○○○○

ML Algorithm

Conclusions

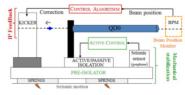
Static & Dynamic

CLIC Stability Requirements



GM counter-measures:

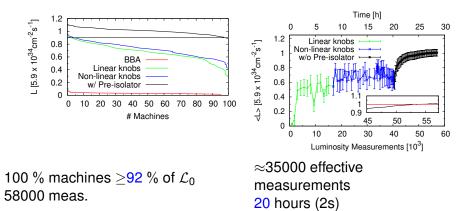
- Active Stabilization System
- Orbit Feed-Back
- Pre-isolator


Stabilization Systems			
Static & Dynamic			
Tuning ○○○●○○○	ML Algorithm	Conclusions	Future Work

- Stabilization Filter type
 - v2
 - v3
 - v3+Orbit Feed-Back

• Pre-isolator:

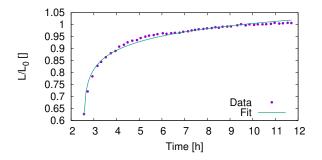
- 1: simple version F. Ramos et al.
- 2: mechanical feedback B. Caron et al.
- 3: F. Ramos et al. including tilt motion



Tuning	
00000	00

Static & Dynamic

Results w/o Pre-isolator



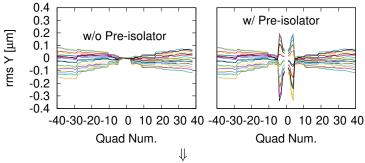
[†]E. Marin et al, "Tuning of CLIC-Final Focus System 3 TeV Baseline Design Under Static and Dynamic Imperfections", IPAC18 - MOPMF043

Tuning	ML Algorithm	Conclusions	Future Work
0000000			

Static & Dynamic

Tuning Convergence Speed

Fitted function: $\mathcal{L}[\mathcal{L}_0](t) = a_0 * log(c_0 * t[h]) + x_0$


$$a_0 = 0.069 \pm 0.002$$

$$c_0 = 7.09 \pm 0.02$$

$$x_0 = 0.731 \pm 0.006$$

Motion of the FD quadrupoles un-correlated to the rest of the beamlines

L-signal jitter is larger than knob improvements

A bug was recently found in the lattice definition (girders definition not compatible with pre-isolator) by C. Gohil

Tuning	

Machine Learning Approach

Latterly we have started a collaboration with Univ. of Malta to use a different approach to tackle the tuning study, **Machine** Learning

- $\bullet~$ Data containing 100 machines and \approx 1500 parameters/machine
- Neural network with 2 different layers
- Data is split into 80% training and 20% testing
- Five categories
 - Correctors
 Bending
 Quadrupoles
 Quads& Mults
 Multipoles

First Results: $D_L = \mathcal{L}_{pred} - \mathcal{L}_{tuned}$				
	Category	$< D_L >$	δD_L	
		[10 ³² cm ⁻² s ⁻¹]	[10 ³³ cm ⁻² s ⁻¹]	
-	Dipoles	4.19	2.2	
	Bendings	6.43	2.3	
	Quadrupoles	2.32	2.3	
	Multipoles	2.59	2.1	
	Quads& Mults	2.61	1.8	

Conclusions

CONCLUSIONS

Tuning 0000000	ML Algorithm	Conclusions	Future Work
Conclusions			

CLIC FFS Tuning study has made a notable progress since CDR (2012)

- Imperfections:
 - item Most static imperfections included
 - Ground motion model for first time in tuning
- Procedure: Implementation of second order knobs
- Performance: x3 faster and slightly larger ${\cal L}$

90% of machines reached a $\mathcal{L} \geq 92\% \mathcal{L}_0{}^{\ddagger}$

- The evolution of *L* over the range [60% to 100%] has been obtained
- Machine learning approach has been initiated but data set needs to be extended to few (tens) thousands machines

[‡]Convergence almost achieved

Conclusions

Future Work

FUTURE WORK

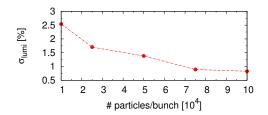
Tuning 0000000	ML Algorithm	Conclusions	Future Work
Improvements			

• Correct implementation of the pre-isolator

Reduce jitter on lumi signal \Rightarrow improve performance

- Increase time lapse between luminosity measurements to few seconds (0.02s at the moment)
- Realistic luminosity signal
- Additional imperfections
- Knobs (orthogonality and/or non-effective)
- Tuning procedure: target smallest $\sigma^*_{e^+,e^-}$, IP feed-back
- Need to reduce the computational time
 - Particle tracking
 - Ground Motion evaluation
 - Luminosity calculation
- Machine learning output? could be of use at initial/intermediate/final tuning stages

Tuning 0000000


Conclusions

Future Work

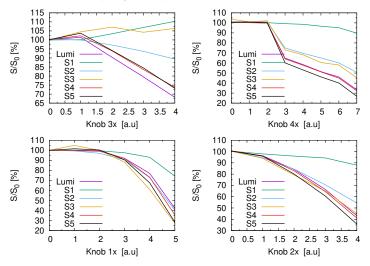
BACK UP

- $< \mathcal{L} >$ should be computed as the average of \mathcal{L} over Δt
- Bunch Population is linked to L precision
 - Minimum 10⁵ particles/beam required for last tuning scans

Need to reduce computing time

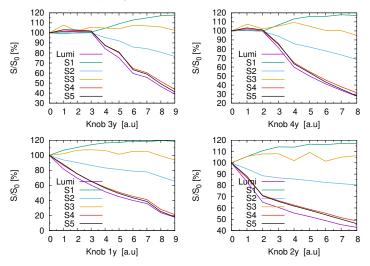
- Particle tracking
- Ground Motion evaluation
- Luminosity calculation

Tuning	ML Algorithm	Conclusions	Future Work
Considered	Signala		
Considered	Signals		

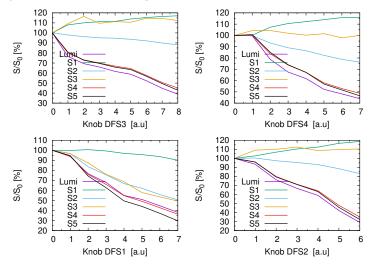

Signals generated by Guinea-Pig through collision of 10⁶ particles per beam

- Luminosity
- Number of Photons (beam1)
- Number of Photons (beam2)
- Number of Coherent
- Number of Pairs
- Number of Hadrons

Conclusions

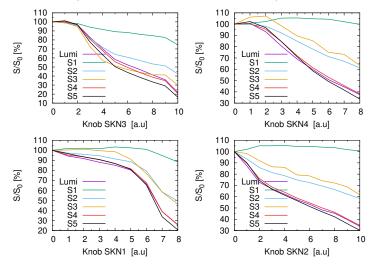

Considered Signals

X - Linear Knobs (Mapclass)


Considered Signals

Y - Linear Knobs (Mapclass)

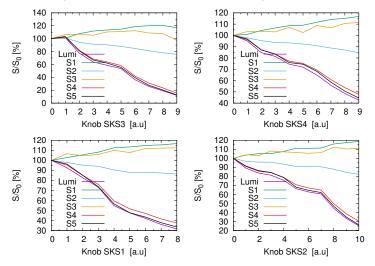
Considered Signals


Dispersion-Free-Steering Knobs - Octave

Tuning	ML Algorithm	Conclusions	Future Work

Considered Signals

Normal Sextupoles - Non-Linear Knobs - Mapclass



Tuning	
0000000	

Conclusions

Considered Signals

Skew Sextupoles - Non-Linear Knobs - Mapclass

