The ILC as a natural SUSY discovery machine and precision microscope: from light higgsinos to tests of unification

Howard Baer and collaborators University of Oklahoma

LCWS2018, UT-Arlington, Oct. 23, 2018

or

Why

SUSY

The hypothesis of weak scale SUSY (that nature is supersymmetric with SUSY breaking at or around the weak scale) is remarkably simple and solves a host of problems

- SUSY- extension of Poincare group to its most general structure: super-Poincare
- scalar field quadratic divergences cancel thus stabilizing the weak scale: potentially solves SM naturalness problem
- local SUSY: supergravity
- the vague prediction: superpartners around the weak scale

In spirit of Karl Popper, any scientific hypothesis must be falsifiable

SUSY has already met 3 tests:

- measured gauge coupling strengths consistent with SUSY unification
- m(t)~173 GeV consistent with SUSY requirement for (radiative) breakdown of EW symmetry
- m(h)~125 GeV in accord with narrow MSSM requirement that m(h)<135 GeV
- BUT where are the sparticles? And where ought they to be?

The main raison d'etre for SUSY is to address the naturalness question: works admirably by eliminating quadratic divergences to m(h): BUT if sparticles too heavy, then re-introduce hierarchy problem in form of Little Hierarchy: why is m(h)~125 GeV and not m(sparticle)~1-10 TeV?

The notion of practical naturalness:

An observable \mathcal{O} is natural if all *independent* contributions to $\mathcal{O} = a_1 + \cdots + a_n$ are comparable to or less than \mathcal{O}

Or else, if one contribution, say $a_1 \gg \mathcal{O}$, then some other (independent) contribution would have to be *fine-tuned* to a large opposite-sign value to compensate and maintain \mathcal{O} at its measured value

"The appearance of fine-tuning in a scientific theory is like a cry of distress from nature complaining that something needs to be better explained"

Pie baking analogy:

Voila! It is very natural!

An unnatural recipe:

1kg(pie)=.2 kg(sugar)+.3 kg(flour)+.5 kg(apples)+
10^4 kg(water)-10^4 kg(evaporation)

mathematically, it is possiblebut success seems highly implausible: it is fine-tuned and hence unnatural ``...settling the ultimate fate of naturalness is perhaps the most profound theoretical question of our time"

Arkani-Hamed et al., arXiv:1511.06495

``Given the magnitude of the stakes involved, it is vital to get a clear verdict on naturalness from experiment"

This should be matched by theoretical scrutiny of what we mean by naturalness

EW naturalness: why are m(W,Z,h)~100 GeV while m(sparticles)~>1 TeV?

Let
$$\mathcal{O} \equiv m_Z^2$$

EW minimization conditions relate m(Z) to SUSY Lagrangian parameters

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -m_{H_u}^2 - \Sigma_u^u - \mu^2$$

For naturalness:

- $m_{H_u}^2$ driven to $\sim -(100-200)^2 \text{ GeV}^2$ at weak scale
- superpotential Higgs/higgsino mass contribution $\mu \sim 100-200~{\rm GeV}$
- TeV scale highly mixed top squarks minimize Σ_u^u (and raise $m_h \sim 125 \text{ GeV}$)

Chan, Chattopadyaya, Nath

HB, Barger, Huang

Perelstein, Shakya

Low value of $\Delta_{\rm EW} \equiv |max\ of\ each\ term\ on\ RHS|/(m_Z^2/2)$ is most conservative, unavoidable naturalness condition

HB, Barger, Huang, Mustafayev, Tata

Most important inference:

light higgsinos of mass mu~100-200 GeV hard to see at LHC but easily discovered at ILC with $\sqrt{s} > 2m(higgsino) \sim 200 - 500$ GeV!

How much is too much fine-tuning?

Visually, large fine-tuning has already developed by $\mu \sim 350$ or $\Delta_{EW} \sim 30$

Nature is natural $\Rightarrow \Delta_{EW} < 20 - 30$ (take 30 as conservative)

#3. What about EENZ/BG measure?

$$\Delta_{BG} = \max_{i} \left| \frac{\partial \log m_Z^2}{\partial \log p_i} \right| = \max_{i} \left| \frac{p_i}{m_Z^2} \frac{\partial m_Z^2}{\partial p_i} \right|$$

 p_i are the theory parameters

applied to pMSSM, then $\Delta_{BG} \simeq \Delta_{EW}$

apply to high (e.g. GUT) scale parameters

$$\begin{split} m_Z^2 &\simeq -2.18\mu^2 + 3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 \\ &+ 0.011M_2M_1 - 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t \\ &- 0.025M_1A_t + 0.22A_t^2 + 0.004M_3A_b \\ &- 1.27m_{H_u}^2 - 0.053m_{H_d}^2 \\ &+ 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 + 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 \\ &+ 0.051m_{Q_2}^2 - 0.11m_{U_2}^2 + 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_{E_2}^2 \\ &+ 0.051m_{Q_1}^2 - 0.11m_{U_1}^2 + 0.051m_{D_1}^2 - 0.052m_{L_1}^2 + 0.053m_{E_1}^2, \end{split}$$

applied to most parameters,

 Δ_{BG} large, looks fine-tuned for e.g. $m_{\tilde{t}_1} \sim 1 \text{ TeV}$ $\Delta_{BG}(Q_3) \simeq 0.73 \frac{1000^2}{91.2^2} \sim 100$

#3. What about EENZ/BG measure?

$$\Delta_{BG} = \max_{i} \left| \frac{\partial \log m_Z^2}{\partial \log p_i} \right| = \max_{i} \left| \frac{p_i}{m_Z^2} \frac{\partial m_Z^2}{\partial p_i} \right|$$

applied to pMSSM, then $\Delta_{BG} \simeq \Delta_{EW}$

What if we apply to high (e.g. GUT) scale parameters?

$$\begin{split} m_Z^2 &\simeq -2.18\mu^2 + 3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 \\ &+ 0.011M_2M_1 - 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t \\ &- 0.025M_1A_t + 0.22A_t^2 + 0.004M_3A_b \\ &- 1.27m_{H_u}^2 - 0.053m_{H_d}^2 \\ &+ 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 + 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 \\ &+ 0.051m_{Q_2}^2 - 0.11m_{U_2}^2 + 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_{E_2}^2 \\ &+ 0.051m_{Q_1}^2 - 0.11m_{U_1}^2 + 0.051m_{D_1}^2 - 0.052m_{L_1}^2 + 0.053m_{E_1}^2, \end{split}$$

For correlated scalar masses $\equiv m_0$, scalar contribution collapses: what looks fine-tuned isn't: focus point SUSY multi-TeV scalars are natural

Feng, Matchev, Moroi

Even with FP, still fine-tuned on m(gluino):(

But wait! in more complete models, soft terms not independent

violates prime directive!

e.g. in SUGRA, for well-specified hidden sector, each soft term calculated as multiple of m(3/2); soft terms must be combined!

e.g. dilaton-dominated SUSY breaking:

$$m_0^2 = m_{3/2}^2$$
 with $m_{1/2} = -A_0 = \sqrt{3}m_{3/2}$

in general:

$$m_{H_u}^2 = a_{H_u} \cdot m_{3/2}^2,$$

 $m_{Q_3}^2 = a_{Q_3} \cdot m_{3/2}^2,$
 $A_t = a_{A_t} \cdot m_{3/2},$
 $M_i = a_i \cdot m_{3/2},$
 \dots

since μ hardly runs, then

$$m_Z^2 \simeq -2\mu^2 + a \cdot m_{3/2}^2$$

 $\simeq -2\mu^2 - 2m_{H_u}^2(weak)$

$$m_{H_u}^2(weak) \sim -(100 - 200)^2 \text{ GeV}^2 \sim -a \cdot m_{3/2}^2/2$$

using μ^2 and $m_{3/2}^2$ as fundamental, then $\Delta_{BG} \simeq \Delta_{EW}$ even using high scale parameters!

bounds from naturalness (3%)	BG/DG	Delta_EW	
mu	350 GeV	0.35 TeV	
gluino	400-600 GeV	~6 TeV	
t1	450 GeV	3 TeV	
sq/sl	550-700 GeV	10-30 TeV	

h(125) and LHC limits are perfectly compatible with 3-10% naturalness: no crisis for SUSY!

Typical spectrum for low Δ_{EW} models

There is a Little Hierarchy, but it is no problem $\mu \ll m(soft) \text{ is OK}$

Smoking gun signature: light higgsinos at ILC: ILC is Higgs/higgsino factory!

Why might mu<<m(soft)?

SUSY mu problem: mu term is SUSY, not SUSY breaking: expect mu~M(Pl) but phenomenology requires mu~m(Z)

- NMSSM: mu~m(soft); but beware singlets!
- Giudice-Masiero: mu forbidden by some symmetry: generate via Higgs coupling to hidden sector: mu~m(soft)
- Kim-Nilles: invoke SUSY version of DFSZ axion solution to strong CP:

KN: PQ symmetry forbids mu term, but then it is generated via PQ breaking

$$\mu \sim \lambda_{\mu} f_a^2 / m_P$$

$$m(soft) \sim m_{3/2} \sim m_{hidden}^2 / m_P$$

Little Hierarchy due to mismatch between PQ breaking and SUSY breaking scales?

$$f_a < m_{hidden} \Rightarrow$$

 $\mu \ll m(soft)$

Higgs mass m(h)~mu tells us where to look for axion!

$$m_a \sim 6.2 \mu \text{eV} \left(\frac{10^{12} \text{ GeV}}{f_a} \right)$$

Gravity safe, electroweak natural axionic solution to strong CP and SUSY μ problems

HB, Barger, Sengupta, arXiv:1810.03713

- 1. Global symmetries fundamentally incompatible with gravity completion
- 2. Expect global symmetry to emerge as accidental (approximate) symmetry from some more fundamental gravity-safe (e.g. gauge or R-) symmetry
 - 3. Krauss-Wilczek: gauge symmetry with charge Ne object condensing leaves charge e fields with Z_N discrete gauge symmetry
 - 4. Babu et al.: Z22 symmetry works but charge 22 object in swampland?
 - 5. Better choice: discrete R-symmetries which arise from compactification of extra dimensions in string theory

A model which works: Z(24) R symmetry (see also Lee et al.)

$$W \ni f_u Q H_u U^c + f_d Q H_d D^c + f_\ell L H_d E^c + f_\nu L H_u N^c + M_N N^c N^c / 2 + \lambda_\mu X^2 H_u H_d / m_P + f X^3 Y / m_P + \lambda_3 X^p Y^q / m_P^{p+q-3}$$

- Lowest dimension PQ breaking operator contributing to scalar PQ potential $\sim 1/m_P^8$: enough suppression so that PQ is gravity-safe
- Also forbids/suppresses RPV/p-decay operators
- $\mu \sim \lambda_{\mu} f_a^2/m_P$

What about m(Hu)^2?

radiative corrections drive $m_{H_u}^2$ from unnatural GUT scale values to naturalness at weak scale: radiatively-driven naturalness

Evolution of the soft SUSY breaking mass squared term $sign(m_{H_u}^2)\sqrt{|m_{H_u}^2|}$ vs. Q

Landscape of string theory vacua provides solution to cosmological constant

Weinberg; Bousso Polchinski; Denef Douglas;...

Can similar reasoning explain scale of soft SUSY breaking?

Statistical analysis of SUSY breaking scale in IIB theory: M. Douglas, hep-th/0405279

start with 10°500 string vacua states

- string theory landscape contains vast ensemble of N=1, d=4 SUGRA
 EFTs at high scales
- the EFTs contain the SM as weak scale EFT
- the EFTs contain visible sector +potentially large hidden sector
- visible sector contains MSSM plus extra gauge singlets (e.g. a PQ sector, RN neutrinos,...)
- SUGRA is broken spontaneously via superHiggs mechanism via either
 F- or D- terms or in general a combination

Why do soft terms take on values needed for natural (barely-broken) EWSB? string theory landscape?

- assume model like MSY/CCK where $\mu \sim 100 \text{ GeV}$
- then $m(weak)^2 \sim |m_{H_u}^2|$
- If all values of SUSY breaking field $\langle F_X \rangle$ equally likely, then mild (linear) statistical draw towards large soft terms
- This is balanced by anthropic requirement of weak scale $m_{weak} \sim 100 \text{ GEV}$

Anthropic selection of $m_{weak} \sim 100$ GeV: If m_W too large, then weak interactions $\sim (1/m_W^4)$ too weak weak decays, fusion reactions suppressed elements not as we know them

 $m(weak) < \sim 400 \; {
m GeV} \; ({
m Agrawal} \; {
m et} \; {
m al.}) \; {
m V. \; Agrawal, \; S. \; M. \; Barr, \; J. \; F. \; Donoghue \; {
m and \; D. \; Seckel, \; Phys. \; Rev. \; D} \; {
m 57} \; (1998) \; 5480; \; {
m V. \; Agrawal, \; S. \; M. \; Barr, \; J. \; F. \; Donoghue \; {
m and \; D. \; Seckel, \; Phys. \; Rev. \; Lett. \; 80} \; (1998) \; 1822.$

Denef&Douglas: statistics of SUSY breaking in landscape

DD observation: W_0 distributed uniformly as complex variable allows dynamical neutralization of Λ while not influencing SUSY breaking

Then, number of flux vacua containing spontaneously broken SUGRA with SUSY breaking scale m_{hidden}^2 is:

$$dN_{vac}[m_{hidden}^2, m_{weak}, \Lambda] = f_{SUSY}(m_{hidden}^2) \cdot f_{EWFT} \cdot f_{cc} dm_{hidden}^2$$

- $f_{cc} \sim \Lambda/m^4$ where DD maintain $m \sim m_{string}$ and not m_{hidden}
- $f_{SUSY}(m_{hidden}^2) \sim (m_{hidden}^2)^{2n_F+n_D-1}$ for uniformly distributed values of F and D breaking fields
- $f_{EWFT} \sim m_{weak}^2/m_{soft}^2$ (?) where $m_{soft} \sim m_{3/2} \sim m_{hidden}^2/m_P$

$$n = 2n_F + n_D - 1$$
$$f_{SUSY} \sim m_{soft}^n$$

landscape favors high scale SUSY breaking tempered by f(EWFT) anthropic penalty!

n_F	n_D	\boldsymbol{n}
0	1	0
1	0	1
0	2	1
1	1	2
0	3	2
2	0	3
2	1	4

What about DD/AD anthropic penalty $f_{EWFT} \sim m_{weak}^2/m_{soft}^2$?

This fails in a variety of *practical* cases:

- A-terms get large: $\Rightarrow CCB$ minima
- $m_{H_u}^2$ too large: fail to break EW symmetry

Must require proper EWSB!

Even if EWS properly broken, then

- large A_t reduces EWFT in the $\Sigma_u^u(\tilde{t}_{1,2})$
- large $m_{H_u}^2(m_{GUT})$ needed to radiatively drive $m_{H_u}^2$ to natural value at weak scale

Better proposal: $f_{EWFT} \Rightarrow \Theta(30 - \Delta_{EW})$ keeps calculated weak scale within factor ~ 4 of measured weak scale $m_{weak} \equiv m_{W,Z,h} \sim 100 \text{ GeV}$

Assume $\mu \sim 100-200$ GeV via e.g. rad PW breaking: then m_Z variable and may be large depending on soft terms $m_{H_{u,d}}^2$ and $\Sigma_{u,d}^{u,d}(i)$

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \sum_d^d - (m_{H_u}^2 + \sum_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

$$m_{H_u} = 1.3 m_0$$

statistical draw to large soft terms balanced by anthropic draw toward red (m(weak)~100 GeV): then m(Higgs)~125 GeV and natural SUSY spectrum!

Denef, Douglas, JHEP0405 (2004) 072 Giudice, Rattazzi, NPB757 (2006) 19; HB, Barger, Savoy, Serce, PLB758 (2016) 113

$$m_0 = 5 \text{ TeV}$$

statistical/anthropic draw toward FP-like region

Recent work: place on more quantitative footing: scan soft SUSY breaking parameters in NUHM3 model as m(soft)^n along with f(EWFT) penalty

We scan according to m_{soft}^n over:

•
$$m_0(1,2): 0.1-40 \text{ TeV}$$
,

•
$$m_0(3)$$
: $0.1-20$ TeV,

•
$$m_{1/2}$$
: 0.5 – 10 TeV,

•
$$A_0: 0 - -60 \text{ TeV}$$
,

•
$$m_A$$
: 0.3 – 10 TeV,

$$\tan \beta : 3 - 60$$
 (flat)

mu=150 GeV (fixed)

HB, Barger, Serce, Sinha, JHEP1803 (2018) 002

Making the picture more quantitative:

$$dN_{vac}[m_{hidden}^2, m_{weak}, \Lambda] = f_{SUSY}(m_{hidden}^2) \cdot f_{EWFT} \cdot f_{cc} dm_{hidden}^2$$

 $m(h)^{\sim}125$ most favored for n=1,2

What is corresponding distribution for gluino mass?

typically beyond LHC 14 reach (may need HE-LHC)

and m(t1)?

first/second generation sfermions pulled to 10-30 TeV thus softening any SUSY flavor/CP problems

What role would ILC play with predicted light higgsinos?

The ILC as a natural SUSY discovery machine and precision microscope: from light higgsinos to tests of unification

Howard Baer¹, Mikael Berggren², Keisuke Fujii³, Jenny List², Suvi-Leena Lehtinen², Tomohiko Tanabe⁴, Jacqueline Yan³

¹University of Oklahoma, Norman, OK 73019, USA

²DESY, Notkestrasse 85, 22607 Hamburg, Germany

³KEK, Tsukuba, Ibaraki, Japan

⁴ICEPP, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

$$e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to (\ell \nu_\ell \tilde{\chi}_1^0) + (q\bar{q}'\tilde{\chi}_1^0)$$

measure $m(jj) < m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^{0}}$ and E(jj)

soft visible particles since small higgsino mass gaps

How do these signals look in the detector? (2)

√s =500 GeV

$$e^{+}e^{-} \to \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0} + (\ell^{+}\ell^{-}\tilde{\chi}_{1}^{0})$$
 measure $m(\ell^{+}\ell^{-}) < m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}}$ and $E(\ell^{+}\ell^{-})$

How do these signals look in the detector? (1)

√s =500 GeV

Benchmarks in this Study

ΔM complies with naturalness (no use of ISR tag)

Unit: GeV	ILC1	ILC2	nGMM1
M(N1)	102.7	148.1	151.4
M(N2)	124.0	157.8	155.8
ΔM(N2,N1)	21.3	9.7	4.4
M(C1)	117.3	158.3	158.7
ΔM(C1,N1)	14.6	10.2	7.3

Process (Pe-,Pe+)	ILC1	ILC2	nGMM1
C1C1 (-1,+1)	1799.9	1530.5	1520.6
C1C1 (+1,-1)	334.5	307.2	309.5
N1N2 (-1,+1)	490.9	458.9	463.5
N1N2 (+1,-1)	378.5	353.8	357.3

Event Generator: WHIZARD v1.95, DBD setup, TDR beam parameters

4 light Higgsinos

- √s = 500 GeV
- full ILD detector simulation

Good precision achievable even for challenging ΔM with soft leptons/jets

Cross sections for $\sqrt{s} = 500 \text{ GeV}$ Similar for all benchmarks

E(jj) and m(jj) measurements $\Rightarrow m_{\tilde{\chi}_1^{\pm}}$ and $m_{\tilde{\chi}_1^0}$ to $\sim 1\%$ typically

- weak scale fits \Rightarrow absolute higgsino masses and mass gaps
- masses and gaps allow sensitivity to gaugino masses $M_1(bino)$ and $M_2(wino)$
- combine with polarized beam σs
- combine with fits to h properties
- extract gaugino masses and other SUSY parameters

parameter	ILC1 NUHM2 true	best fit point	1σ CL	2σ CL
$M_{1/2}$	568.3	556.7	$^{+24.3}_{-20.3}$ $^{+12.8}$	+37.7 -43.1
$\mu^{'}$	115.0	105.3	$^{+12.8}_{-8.2}$	$+14.0 \\ -14.5$
aneta	10.0	11.4	$^{+5.6}_{-1.6}$	$^{+11.4}_{-1.6}$
m_A	1000	968	$^{+167}_{-65}$	+288
M_0	7025	7685	$^{-65}_{+1243}$ $^{-1917}$	$^{-130}_{+2311}$ $^{-2095}$
A_0	-10427	-11064	$^{-1917}_{+2695}$ $^{-1422}$	$^{-2095}_{+2927}$ $^{-2698}$
χ^2	0.0013	0.0011		

		pMSSM-4			pMSSM-10		
parameter	ILC1 pMSSM true	best fit point	1σ CL	2σ CL	best fit point	1σ CL	2σ CL
$\overline{}M_1$	250	250.2	$^{+8.2}_{-7.7}$	+17.1 -15.1	251.3	+8.6 -15.7	$+17.2 \\ -23.7$
M_2	463	463.3	$^{-7.7}_{+8.0}_{-8.1}$	$^{-15.1}_{+16.2}$ $^{-14.9}$	465.8	$^{-15.7}_{+24.2}$ $^{-23.0}_{+10.9}$	$^{-23.7}_{+31.4}$ $^{-49.8}$
μ	115.0	115.0	$ \begin{array}{r} -8.1 \\ +0.2 \\ -0.2 \\ +0.1 \end{array} $	$-14.9 \\ +0.3 \\ -0.3 \\ +0.2$	115.7	$^{+10.9}_{-4.7}_{+8.8}$	$^{-49.8}_{+20.3}$ $^{-6.1}_{+45.3}$
aneta	10.0	10.0	$^{+0.1}_{-0.1}$	$^{+0.2}_{-0.2}$	9.7	$^{+8.8}_{-3.0}_{+310}$	$^{+45.3}_{-3.5}_{+607}$
m_A	1000				1050	-180	-296
M_3	1270				1412	$^{+1791}_{-1104}$	$^{+1411}_{-2843}$
$M_{L(3)}$	7150				7063	$^{+2029}_{-4311}$	$+2645 \\ -5632$
$M_{U(3)}$	1670				1751	$^{+2414}_{-628}$	$^{+4498}_{-740}$
$M_{Q(3)}$	4820				4951	$^{+2\overline{3}\overline{2}4}_{-3226} \\ ^{+1371}$	$^{+3858}_{-3226}$ $^{+1647}$
$A_{t=b=\tau}$	-4400				-4591	$^{+1371}_{-973}$	$^{+1647}_{-2949}$
χ^2		0.0011			0.1360		

Check scale for M1=M2 ino mass unification? Combine with LHC gluino mass measurement?

Compare with mirage unification scenario where gaugino masses unify at intermediate scale:

Can also test WIMP dark matter properties:

Higgsino-like DM underproducedcross check with direct detection rates: confirm need 2nd DM particle: axion?

Conclusions:

- Naturalness: light higgsinos ~100-300 GeV
- Stops, gluinos OK in multi-TeV range
- mu emerges from gravity-safe SUSY axion model: Z(24)^R
- DM= axion+higgsino admixture
- natural soft terms, m(h)=125 GeV from statistics of string landscape
- ILC500: SUSY discovery machine and higgsino factory
- precision higgsino measurements allow tests of gaugino unification

What happens to SUSY WIMP dark matter?

- higgsino-like WIMPs thermally underproduced
- 3 not four light pions => QCD theta vacuum
- EDM(neutron) => axions: no fine-tuning in QCD sector
- SUSY context: axion superfield, axinos and saxions
- DM= axion+higgsino-like WIMP admixture
- DFSZ SUSY axion: solves mu problem with mu<< m_3/2!
- ultimately detect both WIMP and axion?

usual picture

=>

mixed axion/WIMP

KJ Bae, HB, Lessa, Serce

much of parameter space is axion-dominated with 10-15% WIMPs

higgsino abundance

axion abundance

mainly axion CDM for fa<~10^12 GeV; for higher fa, then get increasing wimp abundance

Bae, HB, Lessa, Serce

Direct higgsino detection rescaled for minimal local abundance $\xi \equiv \Omega_{\chi}^{TP} h^2/0.12$

Can test completely with ton scale detector or equivalent (subject to minor caveats)

Conclusion: SUSY is alive and well!

- old calculations of naturalness over-estimate fine-tuning
- naturalness: Little Hierarchy mu<< m(SUSY) allowed
- radiatively-driven naturalness: mu~100-200 GeV, m(t1)<3 TeV, m(gluino)<5-6 TeV</p>
- SUSY DFSZ axion: solve strong CP, solve SUSY mu problem; generate mu<< m(SUSY)
- landscape pull on soft terms towards RNS, m(h)~125 GeV
- natural mirage-mediation/mini-landscape
- natural NUHM2: HL-LHC can cover via SSdB+Z1Z2j channels
- natural mirage/mini-landscape may escape detection at HL-LHC; need LHC33!
- expect ILC as higgsino factory
- DM= axion+higgsino-like WIMP admixture: detect both?
- higgsino-like WIMP detection likely; axion more difficult

#2: Higgs mass or large-log fine-tuning Δ_{HS}

It is tempting to pick out one-by-one quantum fluctuations but must combine log divergences before taking any limit

$$m_h^2 \simeq \mu^2 + m_{H_u}^2(weak) \simeq \mu^2 + m_{H_u}^2(\Lambda) + \delta m_{H_u}^2$$

$$\frac{dm_{H_u}^2}{dt} = \frac{1}{8\pi^2} \left(-\frac{3}{5}g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10}g_1^2 S + 3f_t^2 X_t \right) \qquad X_t = m_{Q_3}^2 + m_{U_3}^2 + m_{H_u}^2 + A_t^2$$

neglect gauge pieces, S, mHu and running; then we can integrate from m(SUSY) to Lambda

$$\delta m_{H_u}^2 \sim -\frac{3f_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{U_3}^2 + A_t^2 \right) \ln(\Lambda/m_{SUSY})$$

$$\Delta_{HS} \sim \delta m_h^2 / (m_h^2 / 2) < 10$$

$$m_{\tilde{t}_{1,2},\tilde{b}_1} < 500 \text{ GeV}$$
 $m_{\tilde{g}} < 1.5 \text{ TeV}$

old natural SUSY

then

 A_t can't be too big

What's wrong with this argument? In zeal for simplicity, have made several simplifications: most egregious is that one sets m(Hu)^2=0 at beginning to simplify

 $m_{H_u}^2(\Lambda)$ and $\delta m_{H_u}^2$ are not independent!

violates prime directive!

The larger $m_{H_u}^2(\Lambda)$ becomes, then the larger becomes the cancelling correction!

HB, Barger, Savoy

To fix: combine dependent terms:

$$m_h^2 \simeq \mu^2 + \left(m_{H_u}^2(\Lambda) + \delta m_{H_u}^2\right)$$
 where now both μ^2 and $\left(m_{H_u}^2(\Lambda) + \delta m_{H_u}^2\right)$ are $\sim m_Z^2$

After re-grouping: $\Delta_{HS} \simeq \Delta_{EW}$

Instead of: the radiative correction $\delta m_{H_u}^2 \sim m_Z^2$ we now have: the radiatively-corrected $m_{H_u}^2 \sim m_Z^2$

Recommendation: put this horse out to pasture

R.I.P.

sub-TeV 3rd generation squarks not required for naturalness

If one has the right parameter correlations, can always get generalized focus point behavior for mHu:

$$m_0^2 = m_{3/2}^2$$
 $A_0 = -1.6m_{3/2}$
 $m_{1/2} = m_{3/2}/5$
 $m_{H_d}^2 = m_{3/2}^2/2$.

 $\mu \simeq 150 \text{ GeV}$
 $m_{H_u}^2(GUT) = 1.8m_{3/2}^2 - (212.52 \text{ GeV})^2$.

HB, Barger, Savoy

 $\Delta_{EW} = 17.6$

To generate minilandscape, take:

Then get upper bound $m_{3/2} < 25-30$ TeV and $\alpha > 7$ else too large $m_0(1,2)$ drives 3rd generation tachyonic Martin, Vaughn, 2-loop RGEs

Increased upper bound on m(gluino)<6 TeV

Alpha bound => mirage unif scale >10^11 GeV

(not too much compression of inos)

mass spectrum for mini2 benchmark point

Figure 7: The superparticle mass spectra from the natural mini-landscape point mini2 of Table 1.

Due to compressed gaugino spectra, minilandscape can probably hide from HL-LHC while maintaining naturalness

