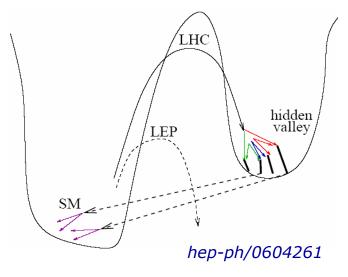


Hidden Valley searches at CLIC

Outline

- Physics motivation
- Analysis strategy
- Multi-variate analysis
- Sensitivity
- Upper limits

Hidden sector – generic possibility for NP


Consequence of string-theory

- → additional gauge sectors may be introduced to SM, SUSY, TeV-ED
 - hidden sector "v-sector"
 - communicator interacts with both sectors

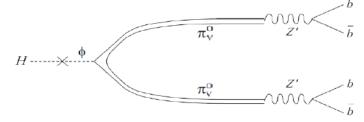
BARRIER

communicator's high mass, weak couplings, small mixing angles, ...

- → weakens interaction between sectors
- → production of new particles rare at low energy

SM group G_{SM} extended with non-abelian group G_v

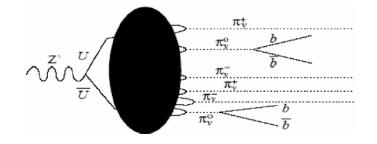
- \rightarrow all SM particles neutral within G_{ν}
- ightarrow if energy sufficient ightarrow **v-particle** charged within G_{v} , neutral under G_{SM}


At TeV scale high dimension operators (Z', Higgs) make possible $SM \leftrightarrow v$ -particles interactions

Direct production and SM Higgs

• SM Higgs may decay into 2 v-particles, each decaying to bb(bar)

$$h^0 \to \pi_V^0 \pi_V^0 \to b \bar b b \bar b$$



- scalar decaying to the heaviest particles it has access to in order to defeat natural helicity suppression

Phys. Lett. B651 (2007) 374

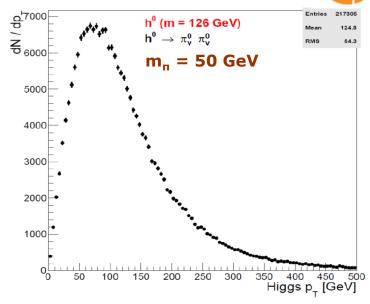
• Direct multi- n_v production

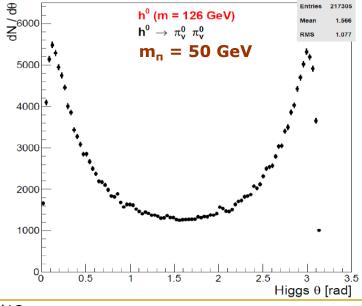
$$Z' \rightarrow \pi_v^0 + \pi_v^+$$
 $\downarrow \quad b\bar{b} \quad \downarrow \quad missing energy$

- $\pi_v{}^0$ and $\pi_v{}^\pm$ are electrically neutral!
- v-quark production results in multiple v-hadron production with ratio $m(Z')/\Lambda_v$ (v-confinement scale)

LOOKING FOR: long-lived particles (LLP's)

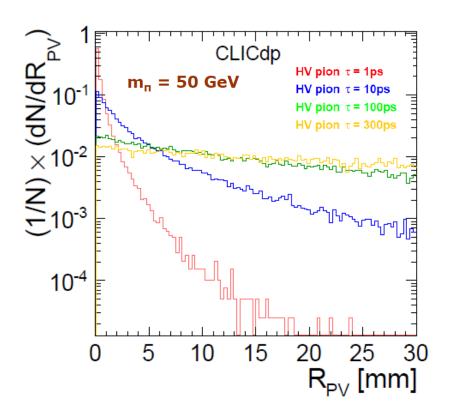
if lifetime between 1 ps and 1 ns (characteristic for weak decays) can be identified in tracking systems by displaced vertices!

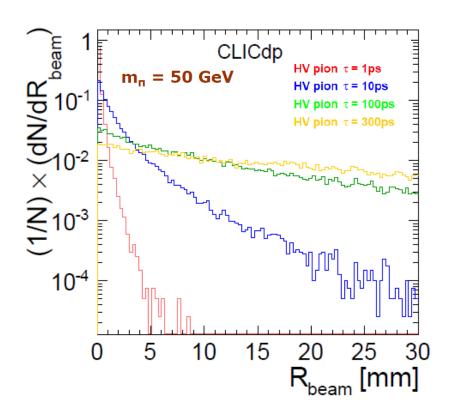

Signal & background samples



Signal $h^0 \rightarrow \pi_v^0 \pi_v^0$ (3 TeV) mass(h^0) = 126 GeV		
HV pion $\tau = 1 \text{ ps}$ $m = 25, 35, 50 \text{ GeV}$		
HV pion $\tau = 10 \text{ ps}$ $m = 25, 35, 50 \text{ GeV}$		
HV pion τ = 100 ps m = 25, 35, 50 GeV		
HV pion τ = 300 ps m = 25, 35, 50 GeV		
HV pion $\tau = 1$, 10, 100, 300 ps $m = 50$ GeV samples without pileup of $\gamma\gamma \rightarrow$ hadrons		
Background <i>(3 TeV)</i>		
$e^+e^- \rightarrow qq$ (bb)		
$e^+e^- \rightarrow qqvv$ (bb)		
e ⁺ e ⁻ → qqqq (4b, 4c, 2b2c)		
e ⁺ e ⁻ → qqqqvv		

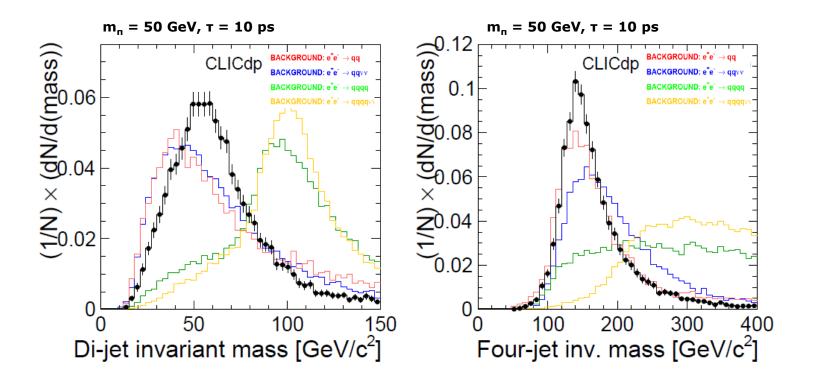
- interaction with CLIC_ILD
 - → Geant4 + MOKKA




Hidden Valley pions

v-particles have non-zero lifetime

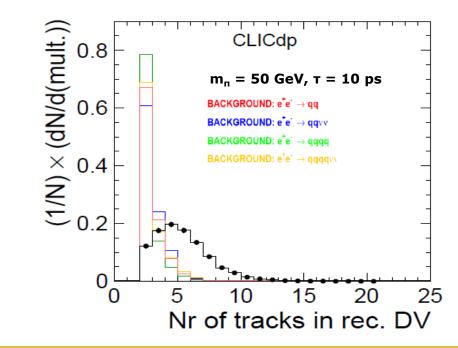
- → analysis based on reconstruction of SV's "far" from PV and beam axis
- → displaced vertices (DV) more PV-like



Jet reconstruction and tagging

- k_t algorithm (FastJet)
- b-tag and c-tag probability found using standard CLICdp BDT procedure
- R parameter optimized by looking at RMS/Mean of the di-jet and four-jet mass

Displaced vertex reconstruction



Displaced vertices are rather PV-like objects

- accumulate as many tracks as possible from Hidden Valley pions
- nr of tracks > 4 → eliminate background from b-hadrons

Specific two step procedure to reconstruct DV's

- including seeding and fitting
- developed and optimised for the Hidden Valley analysis

Selection efficiency

- DV reconstruction based on seeding optimized for Hidden Valley
- cut on nr of displaced vertices in the event

Signal	Fraction of events with at least 2 DV's
HV pion, $\tau = 1$ ps $m = 50$ (25,35) GeV	72 (68,70) %
HV pion, τ = 10 ps m = 50 <i>(25,35)</i> GeV	89 (86,86) %
HV pion, τ = 100 ps m = 50 <i>(25,35)</i> GeV	97 (93,94) %
HV pion, τ = 300 ps m = 50 <i>(25,35)</i> GeV	86 (80,82) %
Background	
$e^+e^- \rightarrow qq$	6 %
e ⁺ e ⁻ → qqvv	8 %
e ⁺ e ⁻ → qqqq	9 %
e ⁺ e ⁻ → qqqqvv	11 %

• assign two jets to one displaced vertex

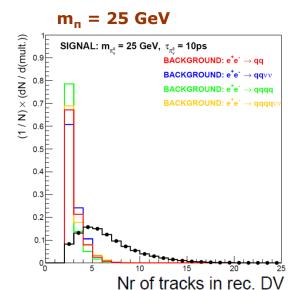
 \rightarrow nr of common charged particles jet-DV (seed) is max. (second max.)

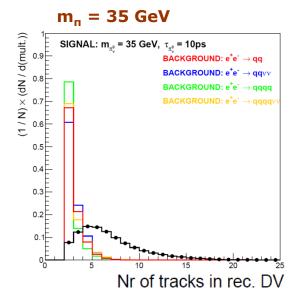
Multi-variate analysis

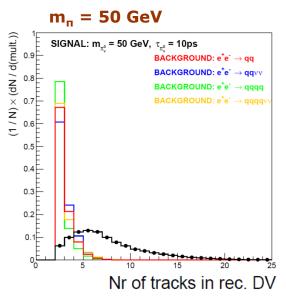
Multi-variate analysis for events with at least 2 DV's

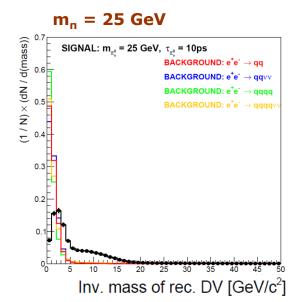
- \rightarrow 7 variables with good separation of signal wrt background ($m_{\pi} = 25, 35, 50 \text{ GeV}$)
- nr of tracks in DV
- DV multiplicity in the event
- DV invariant mass
- mass of di-jet assigned to the DV
- mass of four-jet assigned to 2 DVs

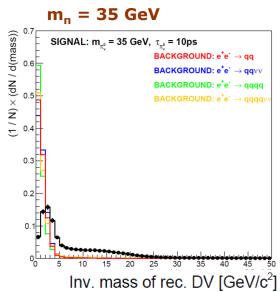
if reconstruct events with 4 jets

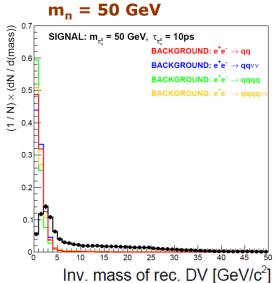

• $log(y_{n-1,n})$ effective against backgrounds with 2 or 3 jets

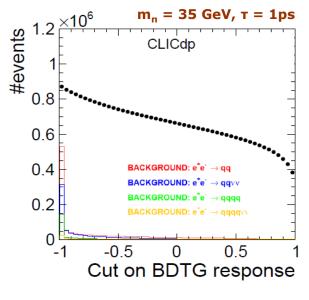

if reconstruct events with 2 jets

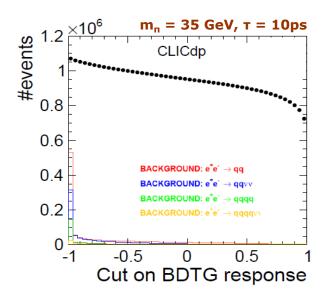

• $log(y_{n+1,n})$ effective against backgrounds with 3 or 4 jets

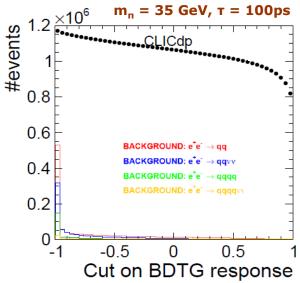

Example separation

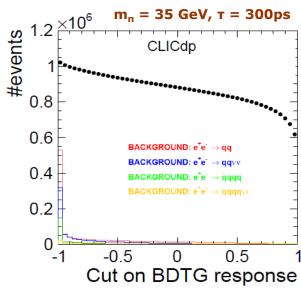


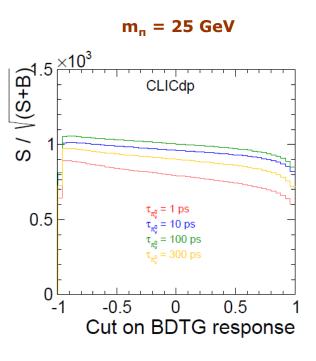


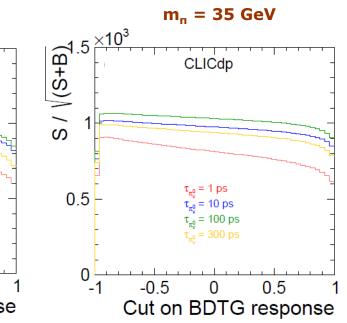


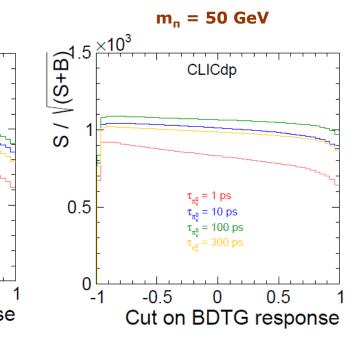


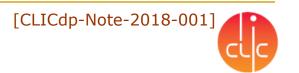

BDT for CLIC 3 ab⁻¹ at 3 TeV

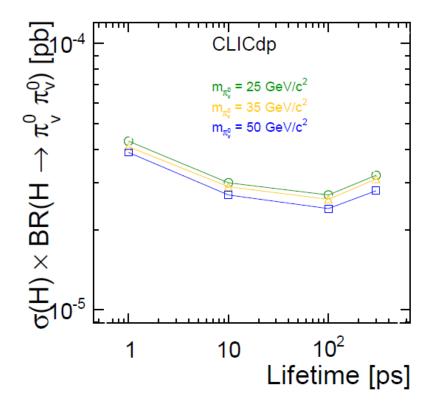

[CLICdp-Note-2018-001]






Significance


- Significance S / $\sqrt{(S + B)}$ as a function of the cut on BDTG response
 - to choose the cut on BDTG discriminator



Upper limits

- Upper limits on x-section * BF at 95% CL for 3 ab⁻¹ using CLs
 - direct comparison to pp results not straightforward
 - but much better limits as compared to ATLAS, CMS and LHCb results!

Conclusions

- Hidden sector: generic possibility for BSM physics
- Signal samples for 4 different HV pion lifetimes and 3 different masses
- Particle and jet reconstruction optimized
- Displaced vertices reonstructed using seeding procedure + loose SV finding
- Multivariate analysis based on reconstructed DVs & jets
- Sensitivities for CLIC 3 ab⁻¹ at 3 TeV
- Upper limits at 95% CL for 3 ab-1

much better results as compared to ATLAS, CMS and LHCb

• **PLANS:** - use new tracking for displaced tracks and $\sqrt{s} = 350$ GeV - off-shell Higgs