

Further Studies on February Shifts

R. Ramjiawan Friday, 23rd February 2018

Outline

- Follow up from last weeks meeting:
 - Fitting position with charge and measure new corrected position jitter measurement.
 - Stability of phase (θ_{IQ}) and phase jitter.
 - Errors on calibration constant (k).
 - Resolution fitting with and without including charge and considering other fitting parameters (for charge and attenuation scan).
 - Bunch positions measured across a charge scan.
 - Latency measurement.
- New items:
 - Strange features in the reference signal around edges of saturation.

Fitting position with charge

John Adams Institute for Accelerator Science

- Plots shown are for the data file for which fitting the charge made the biggest impact on resolution.
- (AQD0FFyScan11, jitRun11 (09/02/2018), high-beta optics, 10dB)
- Fitting the charge seems to mostly make a few nanometres difference to the jitter measurement. At most it makes ~ 5nm difference.
- Position-charge correlation typically no higher than +/- 20 %.
- 'charge corrected position' = position + coeff. * charge, the coefficient is then scanned to find setting
 producing minimum jitter on charge corrected position.

Stability of Phase and Calibration Constant

- Repeat calibrations were performed (05/02/2018).
- ThetaIQ found by perpendicular fit, applied using method described in York et al. (American Journal of Physics 72, 367 (2004)). Gives upper and lower uncertainty values.
- Calibration constant k found by weighted vertical least squares fit; with errors derived using method shown in:

https://www.che.udel.edu/pdf/FittingData.pdf.

$$aERR = slope_error_of_weighted_line = \sqrt{\frac{\sum \frac{1}{e_i^2}}{(\sum \frac{x_i^2}{e_i^2})(\sum \frac{1}{e_i^2}) - (\sum \frac{x_i}{e_i^2})^2}}$$

(X_i = points to fit to, e_i = their respective errors)

k (10 samples)	θ_{IQ}
-0.850 ± 0.008	0.136 ± 0.008
-0.836 ± 0.008	0.138 ± 0.009
-0.828 ± 0.009	0.139 ± 0.009
-0.841 ± 0.010	0.133 ± 0.008
-0.831 ± 0.009	0.100 ± 0.009
-0.829 ± 0.011	0.110 ± 0.009
-0.827 ± 0.013	0.125 ± 0.009
-0.836 ± 0.011	0.132 ± 0.008

Estimate of Phase Jitter

- Using standard deviation of θ_{IO} for all triggers at each step, as measured from y intercept.
- Magnitude of phase jitter appears to be reasonably insensitive to changes in the charge.

Latency Scan

Reference Signal

- Kinks in the reference signal around the peak do not fit the expected shape of a signal that is in digitiser saturation.
 - E.g would expect all triggers at sample 41 to be saturating. (In L.H.S plot)
- Some triggers seem to be saturating and others 1000 ADC away from saturating (e.g sample 55 in the plot below).

Charge Scan

09/02/2018, high-beta optics 10dB

θ_{IQ} vs. charge

- John Adams Institute for Accelerator Science
- Dipole and reference samples are unchanged throughout scan.
- ThetalQ is fit through a perpendicular least squares fit.
- Shift 09/02/2018, 10 dB, high-beta optics.
- Q/q and I/q both show charge dependence.

Charge Scan Resolution IPA

Charge Scan Resolution IPB

Charge Scan Resolution IPC

Red: fitting out calibration constant. Orange: fitting out calibration constant and charge. Green: fitting out calibration constant and theta.

Fit to: Position, Position and 1/q I/q and Q/q I'/q, Q'/q, 1/q I'/q, Q'/q, 1/q, self Q'/q

John Adams Institute

Mean Positions for Charge Scan

- Beam waist between IPA and IPB, close to IPB (high-beta optics).
- Significant change in mean position seen at IPA, IPB and IPC throughout charge scan.
- IPA and IPC, further from the beam waist, show the beam position crossing the electrical centre.

Attenuation Scan

09/02/2018, high-beta optics 10dB

IPA Attenuation Scan

IPB Attenuation Scan

IPC Attenuation Scan

June 2017

Feb 2018

