dE/dx \& V0 Finder

The last two weeks

Uli Einhaus

Asian Physics \& Software Meeting 09.03.2018

dE/dx - Compute_dEdxProcessor

- DD4hep geometry issue
- dx calculation strategy
- New processor options:
- Change truncation values ($8 \%, 30 \%$)
- Select strategy for dx calculation
- Generate dE/dx plots for all strategies
- Weighting each track with sqrt(number of hits) for plots
- Turn off assining dE/dx to track to only generate plots
- General polishing and documentation
- Intention to upload the new version to github soon

$\mathrm{dE} / \mathrm{dx}$ - DD4hep geometry issue

- Gear base unit: mm, DD4hep base unit: cm
- Feature: >> TPCdata.rMinReadout / dd4hep::mm ;
- Problem: without specifying the units min radius was at 37 mm
\rightarrow Silicon hits were accepted and used for $\mathrm{dE} / \mathrm{dx}$ calculation
\rightarrow usually truncated (lower 8\%, upper 30\%)
\rightarrow only came up when number of hits was low
- Now corrected
- Be aware of DD4hep units!

$\mathrm{dE} / \mathrm{dx}-\mathrm{dx}$ calculation strategies

- 1 (so far): use real distance between track hit centers
- 2: use helix path length of projected hits (points on the helix closest to the hit position)
- Gets rid of hit-to-hit position fluctuation
- Can be acquired from class MarlinUtil::SimpleHelix
- Performs worse than strategy 1
- 3: use helix path length over the row height of the hit row
- Gets rid of missing-hits problem, uses all hits
- Calculate crossing point of helix with cylinder at upper and lower row edge (hit radius +/- half pad height)
- Get helix path length between those crossing points
- Performs similar to strategy 1

$d E / d x-d x$ calculation strategies

- 1 (so far): use real distance between track hit centers
- 2: use helix path length of projected hits (points on the helix closest to the hit position)
- Gets rid of hit-to-hit position fluctuation
- Can be acquired from class MarlinUtil::SimpleHelix
- Performs worse than strategy 1
- 3: use helix path length over the row height of the hit row
- Gets rid of missing-hits problem, uses all hits
- Calculate crossing point of helix with cylinder at upper and lower row edge (hit radius +/- half pad height)
- Get helix path length between those crossing points
- Performs similar to strategy 1

$\mathrm{dE} / \mathrm{dx}-\mathrm{dx}$ calculation strategies

- 1 (so far): use real distance between track hit centers
- 2: use helix path length of projected hits (points on the helix closest to the hit position)
- Gets rid of hit-to-hit position fluctuation
- Can be acquired from class MarlinUtil::SimpleHelix
- Performs worse than strategy 1
- 3: use helix path length over the row height of the hit row
- Gets rid of missing-hits problem, uses all hits
- Calculate crossing point of helix with cylinder at upper and lower row edge (hit radius +/- half pad height)
- Get helix path length between those crossing points
- Performs similar to strategy 1

$\mathrm{dE} / \mathrm{dx}-\mathrm{dx}$ calculation strategies

- 1 (so far): use real distance between track hit centers
- 2: use helix path length of projected hits (points on the helix closest to the hit position)
- Gets rid of hit-to-hit position fluctuation
- Can be acquired from class MarlinUtil::SimpleHelix
- Performs worse than strategy 1
- 3: use helix path length over the row height of the hit row
- Gets rid of missing-hits problem, uses all hits
- Calculate crossing point of helix with cylinder at upper and lower row edge (hit radius +/- half pad height)
- Get helix path length between those crossing points
- Performs similar to strategy 1

dE/dx - Plots:

dE/dx - Plots: comparing strategies

- Used single particle random momentum rec-files, 100k events for each PDG (electrons, muons, pions, kaons, protons)

Generated with $\mathrm{dE} / \mathrm{dx}$ processor

Plot by M. Kurata with standard tools

Different binning and reconstruction stages! To do: particle separation plots

dE/dx - Plots: comparing strategies

- Used single particle random momentum rec-files, 100k events for each PDG (electrons, muons, pions, kaons, protons)

Bethe-Bloch curve for dx strategy 2: hit-to-hit path length of projected hits

Strategy 2

dE/dx - Plots: comparing strategies

- Used single particle random momentum rec-files, 100k events each PDG

Bethe-Bloch curve for dx strategy 3: path over hit row

Strategy 3

dE/dx - Plots: comparing strategies

dE/dx - Plots: comparing strategies

Bethe-Bloch curve for dx strategy 3: path over hit row

$\mathrm{dE} / \mathrm{dx}$ - Plots: comparing cut >=30 hits

$\mathrm{dE} / \mathrm{dx}$ - Plots: comparing cut >=30 hits

Bethe-Bloch curve for tracks with >30 hits and dx strategy 1: hit-to-hit distance

dE/dx - Plots: comparing weighting

dE/dx - Plots: comparing weighting

V0Finder

- Part of Marlin TrackingReco
tracker
layers
- Works on reconstructed tracks, cut-based, no fitting
- Takes all pairs of reconstructed tracks, calculates their point of closest approach (vertex candidate) and combines the 4 -vectors to V0 candidates using corresponding rest mass hypotheses

Cut defaults

(radius = xy-distance from IP)

- radius of innermost hit of tracks > 0.7 V0 radius
- distance of reconstructed tracks $<1.5 \mathrm{~mm}$
- reconstructed mass within $10 \mathrm{MeV}(\mathrm{\gamma})$ or $20 \mathrm{MeV}\left(\mathrm{K}_{05}, \Lambda\right)$
- V0 radius > \{cut radius\}
- 10 mm (y) - beam pipe at $\sim 15 \mathrm{~mm}$
- $30 \mathrm{~mm}\left(\mathrm{~K}_{\text {os }}\right)-\tau \cdot \mathrm{c}=27 \mathrm{~mm}$
- $50 \mathrm{~mm}(\Lambda)-\tau \cdot \mathrm{c}=78 \mathrm{~mm}$

Procedure

- Used ddsim particle gun to simulate 4000 kaons and lambdas
- $p=[1,2,3,4,5,6,7,8,9,10] \mathrm{GeV} ; \quad \mathrm{RCut}=[5,10,20,30,50] \mathrm{mm}$
- Efficiency: correctly reconstructed / more than 2 tracks found

1: found MC VO
2: V0 decayed in charged particles
3: number of reco. tracks > 1
4: at least 1 correct VO found
5: + only one reco. V0
Number of events after different cuts

Efficiency plots

- Efficiency: correctly reconstructed / more than 2 tracks found
- Here: efficiency over distance from IP
- Also: total efficiency (cut 4 / cut 3)

RMS of the position difference between MC and Reco

Efficiency plots

- Efficiency: correctly reconstructed / more than 2 tracks found
- Here: efficiency over distance from IP
- Also: total efficiency (cut 4 / cut 3)

Ulrich Einhaus | dE/dx \& V0Finder | 09.03.2018 | Page 23

Efficiency over distance from IP

Plots for RCut $=30 \mathrm{~mm}$

Lambda

Total efficiency, over RCut

New Plot

- Old: cut flow in several steps before and including the V0Finder
- New: cut flow along each step in the V0Finder
- Example: Kaons, $\mathrm{p}=1 \mathrm{GeV}$, rCut $=30 \mathrm{~mm}$

Cut flow for Kaons - 2 GeV and 10 GeV

Cut flow for Lambdas - 2 GeV and 10 GeV

Backup:
 Sw\&Ana Premeeting slides

D0Finder

- Used full simulation of HWW*, 100 events
- Target: look at D0 decays
- Do VOs change?

1: found MC V0
2: V0 decayed in charged particles
3: number of reco. tracks > 1
4: at least 1 correct VO found
5: + only one reco. V0
6: originated from a D0

Ulrich Einhaus | dE/dx \& V0Finder | 09.03.2018 | Page 30

D0 properties - MCParticles only

D0 events cuts:
1: D0 found in event
2: number of D0 found
3: decayed into >= 1 Kaon
4: decayed into >= 1 charged Kaon
5: more than 1 parent found

D0 decay channels:
1: leptonic $\left(e+v_{e}\right.$ or $\left.\mu+v_{\mu}\right)$
2: $e+v_{e}$
3: $\mu+v_{\mu}$
4: leptonic + Kaon
5: Kaon, no leptons
6: no Kaons, no leptons

Secondary particles in D0 decay channels

- Significant multiplicities in Kaons and Pions

D0 path length

- Path = abs (endpoint - vertex) for MCParticles
- Mean: 1.84 mm

Path length of the MC DO

