ILD BeamCal reconstruction.

ILD software and analysis meeting

Rémi Ete

DESY

March 21, 2018

The ILD BeamCal

A few characteristics

- ECal Si-W sandwich calorimeter
- Main purpose:
 - electron $(\gamma \gamma)$ tagging
 - beam diagnostics from the background pattern
- Angular coverage: $\theta \sim [6, 45] \ \textit{mrad}$
- ullet Crossing angle: \sim 14 mrad
- Segmentation:
 - lacktriangledown polar grid in ϕ
 - Cell R size: from 2 to 13.7 mm
- 30 layers: total thickness $\sim 20cm$

Dedicated reconstruction algorithm

- Overlay beam background (ROOT file)
- Reconstruct showers
- BeamCalClusterReco processor
 → FCALSW/FCalClusterer (mainly CLIC)

More documentation in CLIC note:

http://cds.cern.ch/record/2227265/files/BeamCalReco-Note-2016-005.pdf

Setup

- · Currently not run in ILDConfig
 - \rightarrow re-activating
 - \rightarrow re-investigating reconstruction
- iLCSoft v01-19-05
- ILD_I5_v02
- Use BeamCal background maps from previous study by S. Lukić
 - With nominal Anti DiD
 - Without Anti DiD
 - (See next slide)
- Single particle reconstruction
 - Use ddsim particle gun
 - 50 GeV electrons
 - Flat θ distribution
 - Statistics: 10000 events

Background maps (S. Lukić)

Don't pay attention to numbers but to the ratio \rightarrow Factor 2 on background in the central region !

BeamCalClusterReco processor parameters

- Original settings from v01-17-11 (M. Habermehl)
 - Study done with old L*
 - Optimized for maximum efficiency
 - Never looked at energy calibration
 - Digitizer run before reco
 - \rightarrow Give digitizer output to BeamCal reco
 - Geometry change:
 - $^{\blacksquare}$ v01-17-11 \rightarrow Fixed cell size per ring
 - $^{\hbox{\tiny III}}$ v01-19-05 \rightarrow Fixed ϕ segmentation

10 GeV muons in BeamCal

- Re-adjusted a few parameters to fit the current reco
 - No digitizer before reco
 - \rightarrow Give SimHits as reco input
 - ightarrow Need to re-adjust energy-related parameters
 - ETPad = 5.10^{-5} GeV, from MIP scale
 - ETCluster = 0.06 GeV (non-calibrated), rescaled from v01-17-11
 - LinearCalibrationFactor = 72, same as v01-17-11
 - Shower reconstruction parameters left untouched

Reconstruction efficiency

Nominal Anti DiD

- Nice efficiency
- Looks better without Anti DiD ...

Reconstruction efficiency

Mokka world (old L*)
M. Habermehl

Nominal Anti DiD

Efficiency comparable to previous studies

Reconstruction efficiency (2)

 $\overline{\mathsf{MC}}$ / Reco θ angle

- Nominal Anti DiD
 - additional BField adds curvature to particle
 - $ightarrow \Delta heta$ distribution wider

MC / Reco ϕ angle

- Nominal Anti DiD
 - additional BField adds curvature to particle
 - $ightarrow \Delta \phi$ distribution wider

Conclusion

- BeamCal reconstruction (re-)investigated
- Will be (re-)activated soon in ILDConfig (PR pending)
- Shown today:
 - Nice reconstruction efficiency (efficiency VS θ)
 - No fake showers ($< 10^{-3}$)
 - (A bit) better results without Anti DID
 - Results comparable to Mokka world
- Not shown/studied:
 - Reconstructed energy
 - ightarrow Need to tune LinearCalibrationFactor
 - ILD_s5_v02 reconstruction
 - ightarrow No realistic BField map yet

