ILD BeamCal reconstruction.

FCAL software and analysis meeting

Rémi Ete

DESY

March 28, 2018

The ILD BeamCal

A few characteristics

- ECal Si-W sandwich calorimeter
- Main purpose:
 - electron $(\gamma \gamma)$ tagging
 - beam diagnostics from the background pattern
- Angular coverage: heta ~ [6, 45] mrad
- Crossing angle: \sim 14 mrad
- Segmentation:
 - polar grid in ϕ
 - Cell R size: from 2 to 13.7 mm
- 30 layers: total thickness $\sim~20 cm$

Dedicated reconstruction algorithm

- Overlay beam background (ROOT file)
- Reconstruct showers
- BeamCalClusterReco processor \rightarrow FCALSW/FCalClusterer (mainly CLIC)

More documentation in CLIC note:

http://cds.cern.ch/record/2227265/files/BeamCalReco-Note-2016-005.pdf

Setup

- Currently not run in ILDConfig → re-activating
 - \rightarrow re-investigating reconstruction
- iLCSoft v01-19-05
- ILD_I5_v02
- Use BeamCal background maps from previous study by S. Lukić
 - With nominal Anti DiD
 - Without Anti DiD
 - (See next slide)
- Single particle reconstruction
 - Use ddsim particle gun
 - 30/50/100/200 GeV photons
 - Flat θ distribution
 - Statistics: 10000 events / energy point

Background maps (S. Lukić)

Don't pay attention to numbers but to the ratio \rightarrow Factor 2 on background in the central region !

BeamCalClusterReco processor parameters

- Original settings from v01-17-11 (M. Habermehl)
 - Study done with old L*
 - Optimized for maximum efficiency
 - Never looked at energy calibration
 - Geometry change:
 - v01-17-11 \rightarrow Fixed cell size per ring
 - v01-19-05 \rightarrow Fixed ϕ segmentation

- Re-adjusted a few parameters to fit the current reco
 - ETPad = 5.10^{-5} GeV, from MIP scale
 - ETCluster = 0.06 GeV (non-calibrated), rescaled from v01-17-11
 - LinearCalibrationFactor = 72, same as v01-17-11
 - Shower reconstruction parameters left untouched

Reconstruction efficiency

Reconstruction efficiency (old L* / Mokka)

Reconstruction fakes

Reconstruction efficiency - $\theta VS\phi$

ILD Preliminary

Reconstruction efficiency - $\theta VS\phi$

MC / Reco θ angle

R. Ete — DESY — March 28, 2018 — Page 11

MC / Reco ϕ angle

R. Ete — DESY — March 28, 2018 — Page 12

First look at energy ...

First look at energy ...

Conclusion

- ILD BeamCal reconstruction (re-)investigated
- (Re-)Activated a few days ago in ILDConfig
- Will be run in the central production with the performances as shown today
- Shown today:
 - Nice reconstruction efficiency (efficiency VS θ)
 - Low fake rate ($< 10^{-3}$)
 - Results comparable to Mokka world
 - Energy distribution not yet understood ...
- Not shown:
 - Results very similary with/without AntiDID
- Not studied yet:
 - Reconstructed energy
 - \rightarrow Need to tune LinearCalibrationFactor
 - \rightarrow Need to understand energy distribution first
 - ILD_s5_v02 reconstruction
 - \rightarrow No realistic BField map yet

Any inputs from FCal group ?

