

topical paper: final ILD presentation before submission

Measuring the CP state of tau lepton pairs from Higgs decay at the ILC

drafts/reviewing process: https://agenda.linearcollider.org/event/7841/ (see my mail from March 8 for the access key)

Dec 6, 2017:ILD sw/ana phone meetingDec 2016:LCWS/MoriokaJuly 27, 2016:ILD sw/ana phone meetingJune 2016:ECFA-LC/SantanderMay 25, 2016:ILD sw/ana phone meeting

https://agenda.linearcollider.org/event/7823/

https://agenda.linearcollider.org/event/7329/

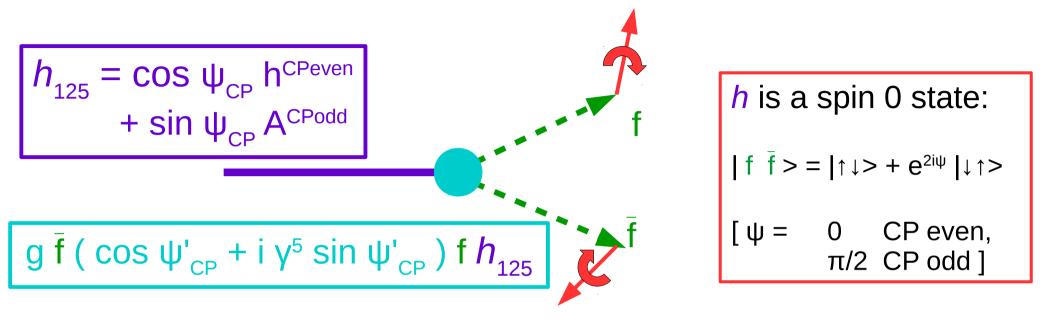
https://agenda.linearcollider.org/event/7104/

Daniel Jeans, KEK 3rd April 2018

Motivation

Is the 125 GeV Higgs a CP eigenstate ?

$$h_{125} = \cos \psi_{CP} h^{CPeven} + \sin \psi_{CP} A^{CPodd}$$


pure CP even: $\psi_{CP} = 0$ [Standard Model] odd: $\psi_{CP} = \pi/2$ or a mixture of even/odd?

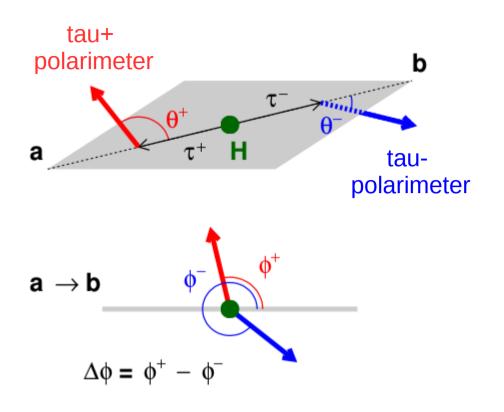
Do Higgs couplings conserve CP?

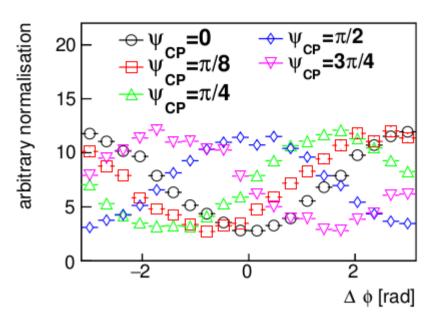
e.g. coupling to fermions:

 $\mathcal{L} \sim g \bar{f} (\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP}) f H$

CP conserving coupling $\psi_{CP} = 0$ [Standard Model] maximally violating $\psi_{CP} = \pi/2$ or partially violating ? The correlation between spins of Higgs decay products is sensitive to their CP state [in particular, the transverse correlation]

why use tau leptons to measure CP in Higgs sector?


- fermion: tree-level CP effects possible


(H \rightarrow WW, ZZ only via loops)

- unstable fermion:
 - distribution of tau decay products gives
 - access to tau spin direction
 - optimal estimator = "polarimeter vector"

easy to extract for tau+ \rightarrow (pi+ nu) and tau+ \rightarrow (pi+ pi0 nu) decay modes

- 6% branching ratio
- clean separation of two fermions (no colour string as in $H \rightarrow bb$)

distribution of $\Delta \phi$ is sensitive to CP mixing angle ψ_{CP}

In this analysis, we measure ψ_{cP} of the tau pair from Higgs decay in a model-independent way

we don't try to understand which mechanism creates the mixing:
 explicitly CP violating coupling, mixed CP mass eigenstate, ...
 → would require global analysis of several measurements,
 + model assumptions

Full tau reconstruction

NIM A810 (2016) 51 arXiv:1507.01700

to reconstruct tau polarimeter, need full reconstruction of tau decay products, including the neutrino(s)

in hadronic tau decays (# neutrino = 1), if we know the tau production vertex, the impact parameters of charged tau decay products, the p_T of the tau-tau system,

then the neutrino momenta can be reconstructed:

6 unknowns/event:

2 x neutrino 3-momenta

6 constraints/event:

2 x impact parameter defines plane of tau momentum

2 x tau invariant mass

2 from event $p_T [p_x, p_y] \rightarrow$ insensitive to ISR / beamstrahlung

[+ solve two-fold ambiguities from quadratic constraints using tau lifetime, and, only if necessary, using reconstructed tau-tau mass] analysis uses events fully simulated in ILD DBD era software version v01-16-02 privately produced tau-tau-f-f samples (WHIZARD) signal: with tau-tau from H backgrounds: tau-tau not from H [H mass set very high] with full spin correlations in tau-pair decays (PYTHIA) other backgrounds: centrally produced DBD samples

```
SIGNAL: e+e- \rightarrow Z H

Z \rightarrow electrons, muons, quarks

H \rightarrow tau tau

tau \rightarrow (pi+ nu) or (pi+ pi0 nu)
```

SM backgrounds: all ffH, 4f, 2f

assume 2 ab⁻¹ of 250 GeV data: H20-staged

reconstruct $Z \rightarrow [ee, mumu, jets] + 2 \times (1-prong tau jets)$

simple preselection

5

10

ILD simulation: 250 GeV, e_L e_B , 0.9 ab⁻¹ Ζ→μμ ILD simulation: 250 GeV, e_L⁻ e_B⁺, 0.9 ab⁻¹ Ζ→μμ events / bin 10⁶ signal events / bin signal 10⁶ (d) (c) other f Î H, H→τ⁺τ other f f H, H→τ+τ 10⁵ other f f H other f i H 10⁵ other fἶτ⁺τ΄ other f f τ+ τ΄ 104 10⁴ other 4f other 4f 2f 2f 10³ 10³ 10² 10² 10 10 1 1 10-1 10ō 20 80 100 120 70 75 80 85 90 95 100 105 110 60 140 40 event |p_| [GeV/c] Z mass [GeV/c²] ILD simulation: 250 GeV, e_L e_B⁺, 0.9 ab⁻¹ Z→qq ILD simulation: 250 GeV, e_L⁻ e_B⁺, 0.9 ab⁻¹ Z→qq 10⁸ events / bin signal events / bin signal 10⁷ (f) (e) other f Ì H, H→τ⁺τ΄ other f f H, H→τ+τ 107 other f i H other f f H 10⁶ 10⁶ other fἶτ⁺τ΄ other f f τ⁺ τ΄ other 4f other 4f 10⁵ 10⁵ 2f 2f 104 10⁴ 10³ 10³ 10² 10² 10 10 1 120 140 160 180 15 20 25 30 35 40 45 0 60 80 100 0 50

event p_ [GeV/c]

20

40

τ τ mass [GeV/c²]

some distributions after reco/presel:

TABLE II. Selection cuts [see text for details; (energies, momenta, and masses) in $\text{GeV}/c^{(0,1,2)}$], signal selection efficiencies ϵ (in %), and number of expected background events (BG) at various stages of the selection in the three selection channels e, μ, q . Event numbers are scaled to the 2 ab⁻¹ of 250 GeV data of the "H20-staged" running scenario.

	l	leptonic preselection			hadronic preselection			
event property	requirement	ϵ_{e}	ϵ_{μ}		$\mathrm{BG}_{\mathrm{lep}}$	requirement	ϵ_q	$\mathrm{BG}_{\mathrm{had}}$
		100	100		$142 \mathrm{M}$		100	$142 {\rm M}$
chg. PFOs	$4 \rightarrow 7$	91	93		$10.1 {\rm M}$	≥ 8	98	$95.7 \ \mathrm{M}$
$Z \rightarrow l l$ candidate	≥ 1	88	90		$1.03 {\rm M}$			
isolated prongs						≥ 2	91	$45.8 \mathrm{M}$
opp. chgd. prongs		84	87		903 k		84	33.5 M
min. prong score						> 0.8	77	$14.5 \mathrm{M}$
impact par. error	$< 25 \mu m$	76	79		491 k	$< 25 \mu m$	74	13.2 M
extra cone energy		72	75		438 k			
m_Z						$60 \rightarrow 160$	72	5.58 M
$m_{\rm recoil}$						$50 \rightarrow 160$	71	$4.90 \ M$
τ decay mode		63	65		236 k		64	$1.99 { m M}$
full selection		$Z \rightarrow ee$		Z	$\rightarrow \mu \mu$		$Z \rightarrow qq$	
event property	requirement	ϵ_e	BG_e	ϵ_{μ}	BG_{μ}	requirement	ϵ_q	BG_q
good $\tau^+\tau^-$ fit		57	112 k	59	$99.5 \ k$		58	$1.64 {\rm M}$
$m_{\tau\tau}$	$100 \rightarrow 140$	46	618	52	366	$100 \rightarrow 140$	42	43.5 k
event p_T	< 5	43	309	50	268	< 20	42	31.6 k
$m_{\rm recoil}$	> 120	42	252	50	162	> 100	41	23.5 k
m_Z	$80 \rightarrow 105$	41	186	49	136	$80 \to 115$	38	$6.93 \ k$
$ \cos \theta_Z $	< 0.96	40	168	47	124	< 0.96	37	$6.22 \ k$
event p_z	< 40	40	144	47	105	< 40	37	5.26 k
$ \cos \theta_P _{\min}$	< 0.95	40	140	47	102	< 0.95	37	$5.26 \ k$
Sample purity (%)			19 26		11			

TABLE I. Migrations among τ -pair decay modes, for preselected and reconstructed signal events in which the Z boson decays to either muons or light quarks. All numbers are given in %.

		True decay	
Reco. decay	$(\pi u,\pi u)$	$(\pi\nu, \rho\nu)$	$(\rho\nu,\rho\nu)$
		$Z \to \mu^+ \mu^-$	
$(\pi u,\pi u)$	93	3	< 1
$(\pi\nu, \rho\nu)$	7	93	6
$(\rho\nu, \rho\nu)$	< 1	4	94
		$Z \to qq(uds)$	
$(\pi u,\pi u)$	89	6	< 1
$(\pi\nu, \rho\nu)$	11	89	12
$(\rho\nu,\rho\nu)$	< 1	5	87

group events according to expected sensitivity, based on:

- tau decay prongs:

d0 measurement significance

- \rightarrow reconstruction quality
- longitudinal comp. of polarimeters
 - → intrinsic sensitivity
- output of simple NN [6 inputs] (signal vs. main 4f bgs)
 - \rightarrow bg. contamination
- output of simple NN [4 inputs] (signal tau decays vs. others)
 - → tau mis-id

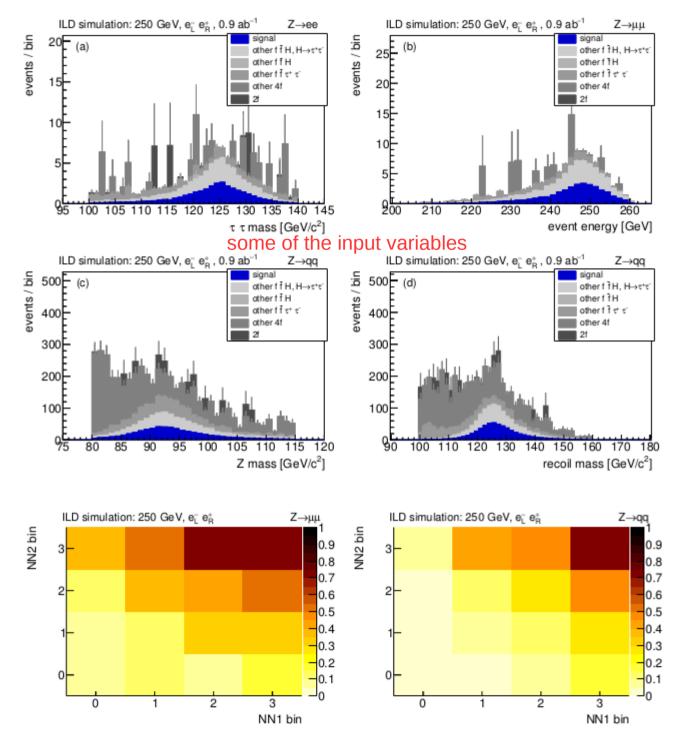
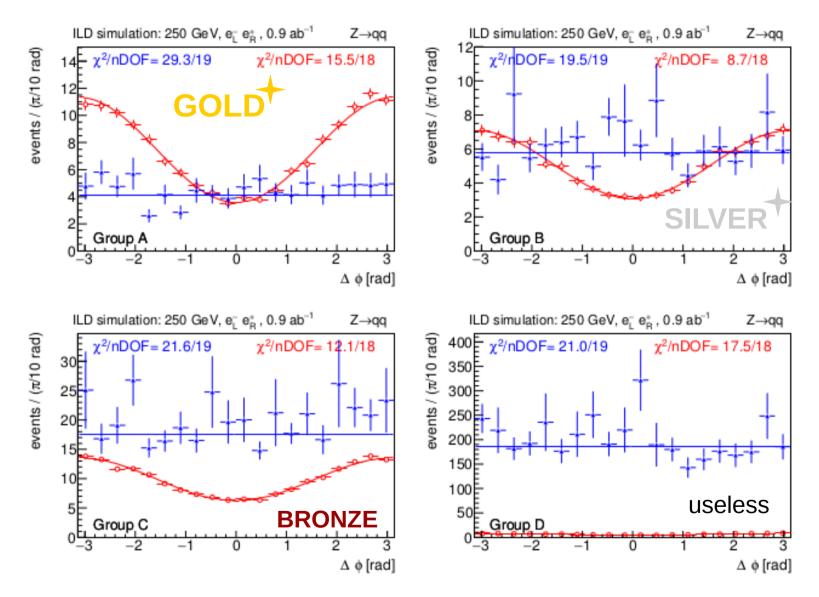
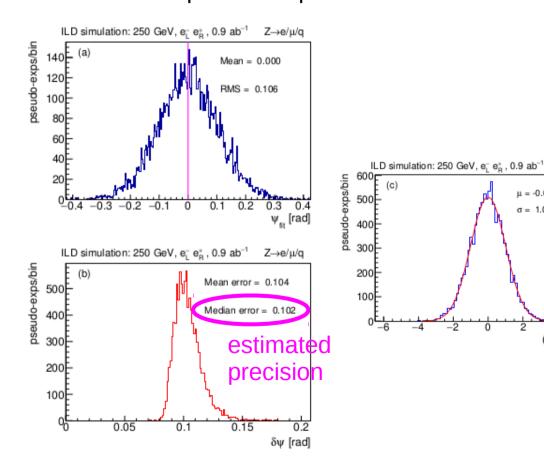



FIG. 8. The color scale shows the signal purity in 4×4 bins of Neural Network outputs, in the muon and hadronic selection channels.




signal background

use fitted functions to run pseudo-experiments

unbinned maximum likelihood fit simultaneously in all purity bins and selection channels

extract single parameter, the phase of $\Delta \phi$ distribution

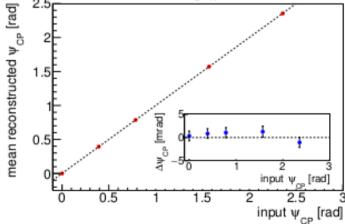
Z→e/µ/q

6

 $\mu = -0.001 \pm 0.010$

 $\sigma = 1.008 \pm 0.007$

4 $(\psi_{fit} - \psi_{true})/\delta\psi$


-2

0

2

TABLE IV. Estimated experimental precision $\delta \psi_{CP}$ on the CP phase in different scenarios.

on the	OF pha	ase m e	different scenarios.	
∫L	beam	ı pol.	notes	$\delta\psi_{\rm CP}$
$[ab^{-1}]$	e^-	e^+		[mrad]
1.0	0	0	full analysis	116
1.0	0	0	only $Z \to ee$	450
1.0	0	0	only $Z \to \mu \mu$	412
1.0	0	0	only $Z \rightarrow qq$	122
1.0	0	0	only $(\pi\nu, \pi\nu)$	387
1.0	0	0	only $(\pi\nu, \rho\nu)$	198
1.0	0	0	only $(\rho\nu, \rho\nu)$	166
1.0	-1.0	+1.0	pure $e_L^- e_R^+$	97
1.0	+1.0	$^{-1.0}$	pure $e_R^- e_L^+$	113
1.0	0	0	$\sigma_{ZH} + 20\%$	104
1.0	0	0	$\sigma_{ZH} - 20\%$	133
1.0	0	0	no bg.	76
1.0	0	0	perf. pol.	100
1.0	0	0	no bg., perf. pol./eff.	25
	H20)-stage	ed: 250 GeV, 2 ab^{-1}	
0.9	-0.8	+0.3	only $e_L^- e_R^+$	102
0.9	+0.8	-0.3	only $e_R^- e_L^+$	120
0.1			only $e_L^- e_L^+$	359
0.1	+0.8	+0.3	only $e_R^- e_R^+$	396
2.0	miz	xed	full analysis	75
ILD) simula	ition: 25	50 GeV, e_ e_ , 0.9 ab-1	Z→e/µ/q
			· · · · · · · · · · · · · · · · · · ·	
i k				
[np] 40 2 -				
1.5				

results of 10k pseudo-exps

timeline

- \sim 2011 started thinking about it
- 2014 ~ 2015 working on tau-pair reconstruction method using impact parameters; published Feb 2016 (NIM)
- Aug 2016: first paper draft to ILD refs (v1.21) (Klaus Desch, Graham Wilson)
- Sep 2016: reviewers' comments received many on presentation a few which prompted significant analysis improvements (particularly from Graham)
- Dec **2017**: updated version (v2.0) significant changes to analysis significant rewrite of several sections
- Jan/Mar 2018: comments received from ILD reviewers mostly regarding presentation
- Mar 2018: updated version (v2.1) ILD-wide review $8 \rightarrow 23$ March)
- Comments from Aharon Levy, Jan Timmermans regarding presentation \rightarrow updated draft (v2.2a)
- 2 April: author opt-in period ends

I hope this keeps the record for longest ILD paper-writing process for many years!

Authorship

no requests to opt-in to author list

due to the analysis improvements which his comments prompted, I asked Graham to be a co-author: he accepted.

I plan to submit to PRD

Thanks to:

- those who followed and commented on the analysis at various stages
- those who read the circulated draft,
- internal reviewers Graham and Klaus.