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ū (2)

µ− (4)

µ+ (8)e− (32)

51

Z

e−

γ

e+ (16) u (1)
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ū (2)e− (32)

56

1

WHIZARD phase space channels November 13, 2012

Process: zz_sl0mu_up (e−e
+
→ uūµ
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+
→ uūµ

−

µ
+) , e

−

e
+
→ cc̄µ

−

µ
+)

Color code: resonance, t-channel, radiation, infrared, collinear, external/off-shell
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ū (2)

µ− (4)

µ+ (8)e− (32)

55

γ

e−

γ

e+ (16) µ− (4)

µ+ (8)

u (1)
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MarlinPhysisim - LCMEZZ :  
                                              can handle    ZZ   process 

The Background  :   
             dominant     ZZ_sl (DBD name)   → μμ + qq

10

TABLE III. The expected number of remaining signal and
background events after applying each cut on the ZH →
µ+µ−H channel at

√
s =250 GeV. The beam polarization

state of P(e−, e+)=(−80%,+30%) and the integrated lumi-
nosity of 250 fb−1 are assumed. The signal selection effi-
ciency ϵ and the signal significance Ssig are also given in the
table.

Cut variables µµH ϵ 2f 4f Ssig

No cut 2603 100 2.9 · 107 1.0 · 107 -
µ+µ− ID 2433 93.5 4.3 · 105 8.3 · 104 3.4
Ntracks∈[6,60] 2246 86.3 6771 2.4 · 104 12.3
EZ∈[14.6,111.7] GeV 1740 66.8 156 1470 30.0
MZ∈[83.0,96.4] GeV 1673 64.3 104 995 31.6
Esub∈[60.0,168.5] GeV 1628 62.5 34 954 31.7
Mrec∈[120,137] GeV 1624 62.4 34 923 31.8

resolutions take important roles to make theoretical dis-405

tributions transfer to realistic distributions, which are406

discussed in the later Section VI. As demonstrations so407

as to show the event acceptance and the migration of the408

observable, ∆Φff̄ binned in 30 is illustrated in Fig. 10.409

In the plot of the event acceptance clear dips can be410

seen at 0, π, and 2π. This is because one or both fi-411

nal state muons are missing when the muons fly along412

a beam pipe. The migration effects on ∆Φff̄ is almost413

nothing since the signal process has the clear reaction.414

B. e+e− → ZH → qq̄H(H → bb̄) at 250 GeV415

Since a branching fraction of the Z boson decaying416

into lepton pairs is a sum of approximately 10 %, as417

far as the pair of electrons and muons is concerned, it418

is respectively about 3.4 %, the sensitivity is, therefore,419

statistically limited. In contrast, because the branching420

fraction of the Z boson decaying into a pair of quarks is421

about 70 %, usage of the quark channels has a big ad-422

vantage statistically. It is expected that the sensitivity423

to the anomalous ZZH couplings is farther improved by424

adding results of the analysis of the Z → qq̄ hadronic425

process.426

1. Jet clustering and pairing427

In the analysis with the Z → qq̄ hadronic process,428

the H → bb̄ channel is selected because the branching429

fraction of H → bb̄ is the largest, and performance of430

heavy flavor tagging of b-quark is expected to be su-431

perior, which is implemented by LCFIPlus [23] in the432

ILCSoft framework. Final state particles in each event433

are clustered into four jets by employing a Durham jet434

algorithm [24], which is applied after removing isolated435

leptons. The Durham algorithm can also provide one436

of the useful topological observables yij which is a dis-437

tance between pseudo-clustered jets. This observable438

is effective for discrimination of certain processes which439

have the different number of jets from the signal process.440

Since the final state is clustered into four jets, combina-441

tions of a few pairs are possible to choose. A proper jet442

pair derived from the Z and the Higgs boson is select443

by imposing kinematical constraint using following the444

χ2 equation,445

χ2 =
(Mij −MH

σH

)2
+

(Mkl −MZ

σZ

)2
(8)

where i–l denote jets, and MZ and MH denote the mass446

of the Z boson and the Higgs boson. σZ is set to be447

5.2 GeV and σH is set to be 7.0 GeV, which represent448

respectively resolutions of the Z mass and the Higgs449

mass.450

2. Background suppression451

The following observables and values are imposed for452

the background suppressions. The distributions of the453

major observables used for the background suppression454

and the invariant mass of the Higgs boson are shown455

in Fig. 11, and the reduction table showing the num-456

ber of remaining signal and background events in each457

cut is given in Table IV, where the integrated lumi-458

nosity of 250 fb−1 with the beam polarization state of459

P(e−, e+)=(−80%,+30%) is assumed. The signal effi-460

ciency and the signal significance are also given for each461

cut.462

• Njet = 4 and Nisolep = 0463

Four jets are properly clustered and exist in each464

event, additionally the number of isolated leptons465

must be 0 since the final state of the signal process466

is full hadronic reaction.467

• Npfo ∈ [55, 170]468

The number of Particle Flow Objects (PFOs).469

Two fermion processes and four fermion semi-470

leptonic decay processes can be almost suppressed471

with this observable.472

• EZ ∈ [87.8, 118.5] GeV, and473

MZ ∈ [82.3, 102.3] GeV474

The energy and the invariant mass of the Z boson475

calculated with the paired two jets, which should476

be close to the mass of the Z boson.477

• The sum of b-tag > 1.25478

Both of the jets originating from the Higgs boson479

have higher b-likeness since the H → bb̄ channel is480
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Check Response of  MarlinPhysisim - LCMEZZ :  

     Events are weighted with    1 /  |ME|2      (weighted with diff. cross-section => flat)

— selection terms of Events 
    ( just test with loose cuts )    

    μ-pair ID
    recoil > 10

    input μ, μ, and its recoil

MarlinPhysisim - LCMEZZ :  
                         the settings is   ZZ→  μμ + Z  decay

a histogram is weighted with 1 /  |ME|2 

Production angle of μ-

black: MC truth

blue: Reco
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— selection terms of Events 
    ( full cuts : 
         same with the shape study) 

a histogram is weighted with 1 /  |ME|2 

Production angle of μ-

black: MC truth

MarlinPhysisim - LCMEZZ :  
                         the settings is   ZZ→  μμ + Z  decay

Check Response of  MarlinPhysisim - LCMEZZ :  

     Events are weighted with    1 /  |ME|2      (weighted with diff. cross-section => flat)

MC truth dist. have spikes? blue: Reco
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χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

5

Event probability

Acceptance (function)
      f ( cosZ, cosFh, dPhi )
           

Matrix Element using  
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In this report, we present prospective sensitivity to anomalous couplings between the Higgs boson8

and the Z boson at the future International Linear Collider (ILC) experiment. The analysis is9

performed by employing a framework of the Effective Field Theory (EFT) where new Lorentz tensor10

structures of the ZZH couplings that include both CP-even and CP-odd states of the Higgs boson11

can be assumed with a new physics scale Λ. The evaluation of the sensitivity is conducted based on12

full detector simulation in which all SM-background contributions are taken into account. Variation13

of kinematical distributions of leading channels of main Higgs production processes e+e− → ZH →14

ff̄H and e+e− → ZZ → e+e−H and total cross-sections are used to find out deviations from15

the SM predictions. Results for the anomalous ZZH couplings are given with the assumption of16

benchmark integrated luminosities and certain realistic running scenario of the ILC experiment for17

both center-of-mass energies
√
s=250 and 500 GeV with two different beam polarization states.18

Sensitivity to anomalous γZH couplings are also evaluated based on the framework of the EFT by19

utilizing two different beam polarization states. A discussion on sensitivity to general parameters20

describing new Lorentz tensor structures related to the Higgs boson and the vector bosons is given21

at the end.22
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DBD:  ZZ_sl   
μ     +   q,  

    νμ  +    q,
    τ     +   q,  
    ντ  +    q,

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene

5

DBD:  ZZ_l
μ     +   μ,  
μ     +   τ,  

    μ    +   ντ 
τ     +   τ,  

    τ    +   νμ 

   μ    +   e / νe / νμ   

= 7.744e-03
X_ZZ_LR * BR_Zmu  (Whizard)

(Physsim)

I counted #of generated samples  

Consistency b/w 
Physsim and Whizard

Reconstructed momenta
Correction for ISR-γ was applied

+SM
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I’m thinking should be a function which gives the acceptance depending on P 

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

5

Event probability

should be given by integrating 

how to handle 2f backgrounds 

+SM
Binned analysis w/ shape

+SM


