Status report

Matrix Element application for A-ZZH coupling study

$$
e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H \text { at } 250 \mathrm{GeV}
$$

Fitting function

$$
\chi^{2}=-2 \log \Delta \mathcal{L}=-2\left(\ln \mathcal{L}\left(\vec{a}_{V}\right)-\log \mathcal{L}_{S M}\right)
$$

Likelihood function

$$
\begin{aligned}
\mathcal{L}\left(\vec{a}_{V}\right) & =\mathcal{L}_{\text {shape }}\left(\vec{a}_{V}\right) \cdot \mathcal{L}_{\text {norm }}\left(\vec{a}_{V}\right)
\end{aligned} \text { anomalous parameters }
$$

Event probability
based on diff. cross-section

Integration over phase-space for four momenta

Acceptance function
$P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{1}{A_{c c} \sigma\left(\vec{a}_{V}\right)} \int^{\boldsymbol{\Delta}} d \bar{\Phi}\left|\mathcal{M}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2} \underset{\nabla}{T\left(\vec{p}^{\mu} \rightarrow \vec{p}^{\mu}\right)} A_{c c}\left(\vec{p}^{\mu}\right)$
Normalization
Matrix Element Transfer function (detector resolution)

Matrix Element using $e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H$ at 250 GeV

$$
T\left(\vec{p}^{\mu} ; \vec{p}^{\mu}\right)=\delta\left(\vec{p}^{\mu}-\vec{p}^{\mu}\right)
$$

The transfer is perfectly delta

: ATLAS, CMS also are assuming this

Acceptance (function)
 $$
f(\cos Z, \cos \mathrm{Fh}, \mathrm{dPhi})
$$
 $$
5 \times 5 \times 5
$$

Signal part

Bkgs. part

$$
\begin{aligned}
& \text { Event probability } \\
& \qquad P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}(\overrightarrow{\mathcal{O}})\left|\mathcal{M}_{\mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
\end{aligned}
$$

if the ave.(fixed) of the acceptance is used,

Acceptance (fix)
~ 0.6

$$
\begin{aligned}
& \text { Analytic calculation } \\
& =\left|A_{0}+a A_{a}+b A_{b}+b t A_{b t}\right|^{2}
\end{aligned}
$$

Matrix Element using $e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H$ at 250 GeV

$$
T\left(\vec{p}^{\mu} ; \vec{p}^{\mu}\right)=\delta\left(\vec{p}^{\mu}-\vec{p}^{\mu}\right)
$$

The transfer is perfectly delta

: ATLAS, CMS also assuming this

Acceptance (function)
 $$
f(\cos Z, \cos \mathrm{Fh}, \mathrm{dPhi})
$$
 $$
5 \times 5 \times 5
$$

Signal part

$$
\begin{aligned}
& \text { Event probability } \\
& \qquad P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}(\overrightarrow{\mathcal{O}})\left|\mathcal{M}_{\mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
\end{aligned}
$$

Binned analysis w/ shape

is given by integrating remaining
, where Acc is
automatically included

Matrix Element using $e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H$ at 250 GeV

The Background :
dominant ZZ_sl (DBD name) $\rightarrow \mu \mu+\mathrm{qq}$

Cut variables	$\mu \mu H$	ϵ	$2 f$	$4 f$	$S_{\text {sig }^{4}}$
No cut	2603	100	$2.9 \cdot 10^{7}$	$1.0 \cdot 10^{7}$	$-{ }^{4}$
$\mu^{+} \mu^{-}$ID	2433	93.5	$4.3 \cdot 10^{5}$	$8.3 \cdot 10^{4}$	3.4^{4}
$N_{\text {tracks }} \in[6,60]$	2246	86.3	6771	$2.4 \cdot 10^{4}$	12.3^{4}
$E_{Z \in[14.6,111.7] ~ \mathrm{GeV}}$	1740	66.8	156	1470	30.0
$M_{Z} \in[83.0,96.4] \mathrm{GeV}$	1673	64.3	104	995	31.6
$E_{\text {sub } \in[60.0,168.5] ~ \mathrm{GeV}}$	1628	62.5	34	954	31.7
$M_{\text {rec }} \in[120,137] \mathrm{GeV}$	1624	62.4	34	923	31.8^{4}

MarlinPhysisim - LCMEZZ :
can handle ZZ process

Check Response of MarlinPhysisim - LCMEZZ :
Events are weighted with $1 / \operatorname{ME} 2$ (weighted with diff. cross-section => flat)
MarlinPhysisim - LCMEZZ :
the settings is $Z Z \rightarrow \mu \mu+Z$ decay

- selection terms of Events

 (just test with loose cuts)μ-pair ID
recoil > 10
input μ, μ, and its recoil
a histogram is weighted with $1 / \mid \mathrm{MEl} 2$

Production angle of μ -

Check Response of MarlinPhysisim - LCMEZZ :

Events are weighted with $1 / \operatorname{IME} 2$ (weighted with diff. cross-section => flat)
MarlinPhysisim - LCMEZZ :
the settings is $\mathrm{ZZ} \rightarrow \mu \mu+\mathrm{Z}$ decay

- selection terms of Events

(full cuts :

 same with the shape study)MC truth dist. have spikes?
a histogram is weighted with $1 /$ |MEl2

Production angle of μ -

Matrix Element using $e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H$ at 250 GeV

Come back to \mathbf{P}

Acceptance (function)

$$
f(\cos Z, \cos \mathrm{Fh}, \mathrm{dPhi})
$$

Consistency b/w Physsim and Whizard
(Physsim)
ן

$$
\begin{aligned}
& \text { Event probability } \\
& \qquad P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}(\overrightarrow{\mathcal{O}})\left|\mathcal{M}_{\mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}+A_{c c}^{\mu \mu Z}\left|\mathcal{M}_{\mu \mu Z}\left(\vec{p}^{\mu}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)+A_{c c}^{\mu \mu Z} \sigma_{Z Z \rightarrow \mu \mu Z}}
\end{aligned}
$$

$$
A_{c c}^{\mu \mu Z}=\frac{Z Z \rightarrow \mu \mu Z^{\text {accpt }}}{Z Z \rightarrow \mu \mu Z^{\text {gene }}}=7.744 \mathrm{e}-03
$$

X_ZZ_LR * BR_Zmu (Whizard)

I counted \#of generated samples

DBD: ZZ_sl	DBD: ZZ_1
$\mu \quad+\mathrm{q}$,	$\mu \quad+\mu$,
$\nu \mu+\mathrm{q}$,	$\boldsymbol{\mu}+\tau$,
$\tau+\mathrm{q}$,	$\mu+\boldsymbol{\nu}$
$v \tau+\mathrm{q}$,	$\begin{aligned} & \tau+\tau, \\ & \tau+v \mu \end{aligned}$
	$\mu+e / v e / \nu \mu$

Event probability

$$
\begin{aligned}
& P_{\text {shape peb }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}(\overrightarrow{\mathcal{O}})\left|\mathcal{M}_{\mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}+A_{c c}^{\mu Z}\left|\mathcal{M}_{\mu \mu Z}\left(\vec{p}^{\mu}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)+A_{c c}^{\mu \mu Z} \sigma_{Z Z \rightarrow \mu \mu Z}}
\end{aligned}
$$

I'm thinking
should be a function which gives the acceptance depending on P
should be given by integrating
how to handle 2 f backgrounds

