Status report

## Matrix Element application for A-ZZH coupling study

$$e^+e^- \to ZH \to \mu^+\mu^- H$$
 at 250 GeV

## Fitting function

$$\chi^2 = -2 \log \Delta \mathcal{L} = -2(\ln \mathcal{L}(\vec{a}_V) - \log \mathcal{L}_{SM})$$

#### Likelihood function

$$\mathcal{L}(\vec{a}_V) = \mathcal{L}_{\mathrm{shape}}(\vec{a}_V) \cdot \mathcal{L}_{\mathrm{norm}}(\vec{a}_V)$$
 anomalous parameters
$$= \prod_{i=1}^{\mathrm{events}} P_{\mathrm{shape}}(\vec{p}_i^{\;\mu}; \vec{a}_V) \cdot P_{\mathrm{norm}}(\vec{a}_V)$$
momenta:  $\mu, \mu$ , and it's recoil info.

Event probability based on diff. cross-section Integration over phase-space for four momenta Acceptance function  $P_{\rm shape}(\vec{p}^{\,\mu};\vec{a}_{V}) \; = \; \frac{1}{A_{cc}} \frac{1}{\sigma(\vec{a}_{V})} \int d\bar{\Phi} \; |\mathcal{M}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2} \; T(\vec{p}^{\,\mu} \to \vec{p}^{\,\mu}) A_{cc}(\vec{p}^{\,\mu})$  Matrix Element Transfer function (detector resolution)

$$T(\vec{p}^{\,\mu};\vec{\bar{p}}^{\,\mu})=\delta(\vec{p}^{\,\mu}-\vec{\bar{p}}^{\,\mu})$$

The transfer is perfectly delta

: ATLAS, CMS also are assuming this



Event probability

$$P_{\mathrm{shape}}(\vec{p}^{\,\mu}; \vec{a}_V) =$$

## Signal part

$$P_{\rm shape}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{\mathcal{O}})|\mathcal{M}_{\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2} + A_{cc}^{\mu\mu Z}|\mathcal{M}_{\mu\mu Z}(\vec{p}^{\,\mu})|^{2}}{A_{cc}^{\mu\mu H}(\vec{a}_{V})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V}) + A_{cc}^{\mu\mu Z}\sigma_{ZZ\to\mu\mu Z}}$$



0

0.5

ĥ

-1.5

-0.5

if the ave.(fixed) of the acceptance is used,

Acceptance (fix)  $\sim 0.6$ 

> Analytic calculation  $= |A_0 + aA_a + bA_b + btA_{bt}|^2$



Bkgs. part

The transfer is perfectly delta  $T(\vec{p}^{\,\mu}; \vec{\bar{p}}^{\,\mu}) = \delta(\vec{p}^{\,\mu} - \vec{\bar{p}}^{\,\mu})$ : ATLAS, CMS also assuming this

> Acceptance (function)  $f(\cos Z, \cos Fh, dPhi)$ 5x5x5

Event probability

$$P_{\mathrm{shape}}(\vec{p}^{\,\mu}; \vec{a}_V) =$$

Signal part

$$P_{\rm shape}(\vec{p}^{\,\mu}; \vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{\mathcal{O}}) |\mathcal{M}_{\mu\mu H}(\vec{p}^{\,\mu}; \vec{a}_{V})|^{2} + A_{cc}^{\mu\mu Z} |\mathcal{M}_{\mu\mu Z}(\vec{p}^{\,\mu})|^{2}}{A_{cc}^{\mu\mu H}(\vec{a}_{V}) \sigma_{ZH \to \mu\mu H}(\vec{a}_{V}) + A_{cc}^{\mu\mu Z} \sigma_{ZZ \to \mu\mu Z}}$$



is given by integrating remaining

, where Acc is automatically included



If MC-Truth is used, the Minimum is almost SM

ำ / วิ

## The Background:

dominant  $ZZ_sl (DBD name) \rightarrow \mu\mu + qq$ 

| Cut variables                           | $\mu\mu H$ | $\epsilon$ | 2f                 | 4f               | $S_{sig}^{4}$                   |
|-----------------------------------------|------------|------------|--------------------|------------------|---------------------------------|
| No cut                                  | 2603       | 100        | $2.9 \cdot 10^{7}$ | $1.0 \cdot 10^7$ | _ 4                             |
| $\mu^+\mu^-$ ID                         | 2433       | 93.5       | $4.3 \cdot 10^5$   | $8.3\cdot 10^4$  | $3.4$ $^{\scriptscriptstyle 4}$ |
| $N_{tracks} \in [6,60]$                 | 2246       | 86.3       | 6771               | $2.4 \cdot 10^4$ | $12.3^{4}$                      |
| $E_Z \in [14.6, 111.7] \text{ GeV}$     | 1740       | 66.8       | 156                | 1470             | 30.0                            |
| $M_Z {\in} [83.0, 96.4]~{ m GeV}$       | 1673       | 64.3       | 104                | 995              | 31.6                            |
| $E_{sub} \in [60.0, 168.5] \text{ GeV}$ | 1628       | 62.5       | 34                 | 954              | 31.7                            |
| $M_{rec} \in [120, 137] \text{ GeV}$    | 1624       | 62.4       | 34                 | 923              | 31.84                           |



## **MarlinPhysisim - LCMEZZ:**

can handle ZZ process



#### Check Response of MarlinPhysisim - LCMEZZ:

Events are weighted with 1 / IMEI2 (weighted with diff. cross-section => flat)

### **MarlinPhysisim - LCMEZZ:**

the settings is  $ZZ \rightarrow \mu\mu + Z$  decay

selection terms of Events( just test with loose cuts )

 $\mu$ -pair ID recoil > 10

input  $\mu$ ,  $\mu$ , and its recoil

a histogram is weighted with 1 / IMEl2



Production angle of μ-

Check Response of MarlinPhysisim - LCMEZZ:

Events are weighted with 1 / IMEI2 (weighted with diff. cross-section => flat)

**MarlinPhysisim - LCMEZZ:** 

the settings is  $ZZ \rightarrow \mu\mu + Z$  decay

.....

a histogram is weighted with 1 / IMEI2

selection terms of Eventsfull cuts:same with the shape study)

MC truth dist. have spikes?



Production angle of μ-

#### Come back to P



I counted #of generated samples

DBD: ZZ\_sl DBD: ZZ\_l

$$\mu + q$$
,  $\mu + \mu$ ,

 $\nu\mu + q$ ,  $\mu + \tau$ ,

 $\tau + q$ ,  $\mu + \nu\tau$ 
 $\nu\tau + q$ ,  $\tau + \tau$ ,

 $\tau + \nu\mu$ 
 $\mu + e/\nu e/\nu\mu$ 



Event probability
$$P_{\text{shape}}(\vec{p}^{\,\mu}; \vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{\mathcal{O}}) |\mathcal{M}_{\mu\mu H}(\vec{p}^{\,\mu}; \vec{a}_{V})|^{2} + A_{cc}^{\mu\mu Z} |\mathcal{M}_{\mu\mu Z}(\vec{p}^{\,\mu})|^{2}}{A_{cc}^{\mu\mu H}(\vec{a}_{V}) \sigma_{ZH \to \mu\mu H}(\vec{a}_{V}) + A_{cc}^{\mu\mu Z} \sigma_{ZZ \to \mu\mu Z}}$$

I'm thinking

should be a function which gives the acceptance depending on P



how to handle 2f backgrounds



