General physics meeting 2018/04/14

Matrix Element application for ZZH coupling study

 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-H$ at 250 GeV

focusing on a signal process

Anomalous ZZH couplings study with distributions

Determination of Lorentz structures between the H and Z

h

6

Theory knows everything

Try to encode all available kinematical information on an event into a single observable .

ISR, beamstrahlung, and FSR

General probability function

Samples and an intermediate goal

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

Matrix Element Calculator can handle (probably) the LO diagram

Analytic calculation of the denominator

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_V) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_V)|^2}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_V)}$$

Cross-section depends on av

av can vary momentum of Z, affecting its daughters consequently.

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

Chi-squared

w: factor for scaling to #expected ~1623

$$\chi^2 = -2 \log \Delta \mathcal{L} = -2(\ln \mathcal{L}(\vec{a}_V) - \log \mathcal{L}_{SM})$$

Likelihood function

$$\mathcal{L}(\vec{a}_V) = \mathcal{L}_{\text{shape}}(\vec{a}_V) \cdot \mathcal{L}_{\text{norm}}(\vec{a}_V)$$

MCevents
$$= \prod_{i=1}^{M} P_{\text{shape}}(\vec{p}_i^{\,\mu}; \vec{a}_V) \cdot P_{\text{norm}}(\vec{a}_V)$$

momenta: μ , μ , and it's recoil info.

$e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-H$ at 250 GeV								
Cut variables	$\mu\mu H$	ϵ	2f	4f	$S_{sig^{43!}}$			
No cut	2603	100	$2.9 \cdot 10^{7}$	$1.0 \cdot 10^{7}$	- 43			
$\mu^+\mu^-$ ID	2433	93.5	$4.3\cdot 10^5$	$8.3\cdot 10^4$	3.4 43 $^{\circ}$			
$N_{tracks} \in [6, 60]$	2246	86.3	6771	$2.4\cdot 10^4$	12.343			
$E_Z \in [14.6, 111.7] \text{ GeV}$	1740	66.8	156	1470	30.043!			
$M_Z \in [83.0, 96.4] { m GeV}$	1673	64.3	104	995	31.644			
$E_{sub} \in [60.0, 168.5] \text{ GeV}$	1628	62.5	34	954	31.744			
$M_{rec} {\in} [122, 137]~{\rm GeV}$	1623	62.4	33	907	31.944			

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

ME : is LO
Sample : no ISR no BSL
Denomi. : is calculated without ISR and BSL

 $\Delta\chi^2 = \chi^2 {-} \chi^2_{min}$

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

 $\Delta\chi^2 = \chi^2 {-} \chi^2_{min}$

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

 $\Delta\chi^2 = \chi^2 {-} \chi^2_{min}$

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated including ISR and BSL with Wizard interface

Summary

ME : is LO how difficult to handle NLO

$e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-H$ at 250 GeV

Cut variables	$\mu\mu H$	ϵ	2f	4f	$S_{sig^{43}}$
No cut	2603	100	$2.9 \cdot 10^7$	$1.0 \cdot 10^{7}$	- 43
$\mu^+\mu^-$ ID	2433	93.5	$4.3\cdot 10^5$	$8.3\cdot 10^4$	3.4 43
$N_{tracks} \in [6, 60]$	2246	86.3	6771	$2.4\cdot 10^4$	12.3_{43}
$E_Z \in [14.6, 111.7] \text{ GeV}$	1740	66.8	156	1470	30.043
$M_Z \in [83.0, 96.4] \text{ GeV}$	1673	64.3	104	995	31.644
$E_{sub} \in [60.0, 168.5] \text{ GeV}$	1628	62.5	34	954	31.744
$M_{rec} \in [122, 137] \text{ GeV}$	1623	62.4	33	907	31.944

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2} + A_{cc}^{\mu\mu Z}|\mathcal{M}_{\mu\mu Z}(\vec{p}^{\,\mu})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V}) + A_{cc}^{\mu\mu Z}\sigma_{ZZ\to\mu\mu Z}}$$

Is it possible to submit the study to ALCW

Denominator normalization

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_V) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_V)|^2}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_V)}$$

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

Denominator must be correctly normalized to 1

