General physics meeting 2018/04/14

Matrix Element application for ZZH coupling study

$$
e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} H \text { at } 250 \mathrm{GeV}
$$

focusing on a signal process

Anomalous ZZH couplings study with distributions

Determination of Lorentz structures between the H and Z

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
$$

Construction of the multi-dimensional distribution have difficulty

$$
\begin{aligned}
& \sqrt{s}=250 \mathrm{GeV} \text { with } \mathrm{L}_{\mathrm{int}}=250 \mathrm{fb}^{-1} \text { and } \mathrm{P}\left(e^{-}, e^{+}\right)=(-80 \%,+30 \%) \\
& \left\{\begin{array}{l}
a_{Z}=\left[\begin{array}{ll}
-0.912, & 0.896
\end{array}\right] \\
b_{Z}=\left[\begin{array}{ll}
-0.324, & 0.326
\end{array}\right], \quad \rho=\left(\begin{array}{ccc}
1 & -0.9992 & -0.0176 \\
\tilde{b}_{Z}=\left[\begin{array}{ll}
-0.155, & 0.155
\end{array}\right]
\end{array} \quad 1 \begin{array}{c}
0.0158 \\
-
\end{array}\right]-
\end{array}\right)
\end{aligned}
$$

Theory knows everything

Try to encode all available kinematical information on an event into a single observable .

Observation an event in terms of differential σ

LO

$$
P\left(\vec{p}^{\mu}\right)=\frac{\left|\mathcal{M}\left(\vec{p}^{\mu}\right)\right|^{2}}{\sigma} d \Phi
$$

ISR, beamstrahlung, and FSR

NLO effects

Matrix Element doesn't fit reaction anymore

General probability function

Event probability based on diff. cross-section

Integration over phase-space for four momenta

Acceptance function

$$
\left.\left.P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{1}{A_{c c}\left(\vec{p}^{\mu}\right) \sigma\left(\vec{a}_{V}\right)} \int \underset{\mathbf{V}}{\boldsymbol{\Delta}} d \overline{\mathcal{M}} \right\rvert\, \overrightarrow{p^{\mu}} ; \vec{a}_{V}\right)\left.\right|^{2} T\left(\vec{p}^{\mu} \rightarrow \vec{p}^{\mu}\right) A_{c c}\left(\vec{p}^{\mu}\right)
$$

$\boldsymbol{\nabla}$	\boldsymbol{V}
Acceptance function	Normalization

Matrix Element Transfer function (detector resolution)

Transfer is δ

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Samples and an intermediate goal

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Matrix Element Calculator can handle (probably) the LO diagram
Two signal samples
with ISR and BSL without ISR and BSL

```
lorm_spectrum_on = T
```

USER_spectrum_on	$=F$
ISR_on	$=F$
CIRCE_on	$=F$

Recoil Generator

Analytic calculation of the denominator

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Cross-section depends on av
av can vary momentum of Z , affecting its daughters consequently.
This effects must Correctly handle
when Cross-section is calculated
by integrating possible phase-space
To realize it
Acc is embedded into PHYSSIM generator. perform integration together with Acc

$\sigma=\left|\mathrm{A}_{0}+\mathrm{a} \mathrm{A}_{\mathrm{a}}+\mathrm{bA} \mathrm{A}_{\mathrm{b}}+\mathrm{bt} \mathrm{A}_{\mathrm{bt}}\right|^{2}$ provides 10 terms composed of 1 SM ,

3 pure contribution

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Chi-squared w: factor for scaling to \#expected ~ 1623

$$
\chi^{2}=-2 \log \Delta \mathcal{L}=-2\left(\ln \mathcal{L}\left(\vec{a}_{V}\right)-\log \mathcal{L}_{S M}\right)
$$

Likelihood function

$$
\begin{aligned}
& \mathcal{L}\left(\vec{a}_{V}\right)=\mathcal{L}_{\text {shape }}\left(\vec{a}_{V}\right) \cdot \mathcal{L}_{\text {norm }}\left(\vec{a}_{V}\right) \\
&=\prod_{i=1}^{\text {MCevents }} P_{\text {shape }}\left(\vec{p}_{i}^{\mu} ; \vec{a}_{V}\right) \cdot P_{\text {norm }}\left(\vec{a}_{V}\right) \\
& \text { momenta: } \mu, \mu, \text { and it's recoil info. }
\end{aligned}
$$

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : no ISR no BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated including ISR and BSL with Wizard interface

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Summary

ME : is LO

how difficult to handle NLO

$$
\mu^{-} H \text { at } 250 \mathrm{GeV},
$$

$P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{\mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}+A_{c c}^{\mu \mu}\left|\mathcal{M}_{\mu \mu Z}\left(\vec{p}^{\mu}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)+A_{c c}^{\mu \mu Z} \sigma_{Z Z \rightarrow \mu \mu Z}}$

Is it possible to submit the study to ALCW

Denominator normalization

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)} \quad P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Denominator must be correctly normalized to 1
σ varies depending on av
automatically Acc is included?
Denomi $=\sum^{\text {MCremain }} \frac{|\mathrm{M}(\mathrm{bsm})| 2}{|\mathrm{M}(\mathrm{sm})| 2} \underbrace{\frac{\boldsymbol{\sigma}(\text { expect }) * \mathrm{~L} 250}{\mathrm{~N} \text { gene }}}_{\mathrm{MC} \text { weight }} / \mathrm{L} 250 \quad=\quad \sigma$ (remaining)

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : no ISR no BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

is normalized
with $\mathrm{IM} \mid 2$ of remaining events

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

is normalized
with $\mathrm{I} \mathrm{M} \mid 2$ of remaining events

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
is normalized
with $\mathrm{I} \mathrm{M} \mid 2$ of remaining events

Denomi. : is calculated including ISR and BSL with Wizard interface

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

