

Study of HγZ coupling using e+e- -> γ H at the ILC <u>Yumi Aoki(SOKENDAI)</u> Tian Junping, Keisuke Fujii, Tomohisa Ogawa 2018.04.14(Sat) General mtg@KEK

Outline

1. Motivation

- 2. Theoretical framework
- 3. Experimental method
- 4. Simulation framework
- 5. Event selection
- 7. Result
- 8. Next approach
- 9. Summery

1.Motivation

Find new physics via H $\gamma \gamma$ and H γZ couplings

Below diagram is not exist in Tree level standard model

2. Theoretical framework

effective Lagrangian for $e+e- \rightarrow \gamma H$

 $c_{\gamma Z}$: effective coupling between Higgs and γZ (dimensionless) c_{γ} : effective coupling between Higgs and $\gamma \gamma$. Effective new physics scale

2. Theoretical framework

partial decay widths of h-> $\gamma\gamma$ and h-> γ Z: (calculation by EFT)

$$\Gamma_{\gamma\gamma} = \frac{M_H^3}{64\pi} (\frac{c_{\gamma}}{\Lambda})^2 \qquad (M_{\rm H} = 125 \text{ GeV})$$
arXiv:1101.0593

$$\Gamma_{\gamma Z} = \frac{M_H^3}{128\pi} (\frac{c_{\gamma Z}}{\Lambda})^2 (1 - \frac{M_Z^2}{M_H^2})^3$$

Standard model loop calculation

$$\Gamma_{\gamma Z}$$
: 6.25 x 10⁻³ MeV $\longrightarrow c_{\gamma Z} / \Lambda = 1.12 \times 10^{-1} / \text{TeV}$

 $\Gamma_{\gamma\gamma}$: 9.27 x 10⁻³ MeV $\longrightarrow c_{\gamma} / \Lambda = 3.09 \times 10^{-2} / \text{TeV}$

By comparing with standard model loop calculation, we can extract the standard model values of $c_{\gamma Z} / \Lambda$ and c_{γ} / Λ .

3.Experimental Method

$$L_{\gamma H} = \underbrace{\frac{c_{\gamma Z}}{4\Lambda}}_{\mu\nu} A_{\mu\nu} Z^{\mu\nu} H + \underbrace{\frac{c_{\gamma}}{4\Lambda}}_{\mu\nu} A_{\mu\nu} A^{\mu\nu} H$$

measure this 2 parameters

(1) Measure the cross sections of e+e- -> γ h for at least two different beam polarizations So that c_{y and} c_{yz} can be determined separately

② Since $\frac{c_{\gamma}}{4\Lambda}$ can be constrained already by measurement of h \rightarrow $\gamma\gamma$ branching ratio at LHC, we can extract other parameter by just measuring cross section for a single polarization.

3.Experimental Method (Continued)

 γZ and $\gamma \gamma$ diagrams have the same momentum dependence in the cross section formula

 \rightarrow phase space integration can be factored out

 \rightarrow The cross section normalized to SM can be written as

 $\frac{\sigma_{e^+e^-\to h\gamma}}{\sigma_{SM}}=(a\bar{c}_{\gamma z}+b\bar{c}_{\gamma})^2$ Coefficient a and b are calculated by physsim Left handed beam polarizations **Right handed** $\sqrt{s}=250 \text{ GeV}$ $\frac{\sigma}{\sigma_{SM}} = (0.573\bar{c}_{\gamma z} + 0.427\bar{c}_{\gamma})^2 \qquad \frac{\sigma}{\sigma_{SM}} = (8.01\bar{c}_{\gamma z} - 7.01\bar{c}_{\gamma})^2$

$$\sigma_{SM}$$

$$\bar{c}_{\gamma z} = \frac{c_{\gamma z}}{c_{\gamma z(SM)}}$$

$$\bar{c}_{\gamma} = \frac{c_{\gamma}}{c_{\gamma(SM)}}$$

3. Experimental Method (Continued)

The cross section relative to SM

If cyZ(bar) change, the cross section change like this graph.

3. Experimental Method (Continued)

Absolute value of the cross section

experimental observable : σ

We can get $c_{\gamma z}$ by this formula.

4.Simulation framework

Physsim $\sqrt{s}=250 \text{ GeV}$ Integrated Luminosity: 2000 fb⁻¹ back ground : DBD sample

ILD full simulation (Mokka)

iLCSoft v01-16-02
 MarlinReco, PandoraPFA,
 LCFI+, Isolated photon finder, jet clustering

Signal:
$$e^+e^- \to \gamma H \to \gamma (b\bar{b})$$

Signal signatures

1. Isolated monochromatic photon with energy 93 GeV

2. 2 b jets

3. m(bb) (invariant mass) = higgs mass

Main backgrounds

e+e- -> γ qq(bar) dominated by e+e- $\rightarrow \gamma$ Z (radiative return)

1) Pre-selection

- Isolated photon
 - ► Photon ID
 - \blacktriangleright E_Y > 50 GeV
- \rightarrow Left events except photon
 - ► 2jet clustering (Durham)
 - ► Flavor tagged (LCFI+)

* This plot is for events after the pre selection

2 Final selection
 -Cut 2: missing energy<35 GeV

② Final selection

-Cut 3: Photon energy(Eq) 75 GeV<Eq<98 GeV

the background have very forward or backward photon

2 Final selection-Cut 5 : bb invariant mass

After all the other cuts, normalized to Integrated Luminosity: 2000 fb⁻¹

6.	Result	

 $significance = \frac{N_s}{\sqrt{N_s + N_B}}$

Reduction table **Preliminary**

Ns:Number of signal N_B:Number of back around

	The state of ball ground			
	Signal	background	Significance	
Expected	196	314,154,000	0.01	
Pre selection	184	68,287,700	0.02	
btag>0.8	164	4,914,990	0.07	
E _{mis} <35	150	4,268,840	0.07	
75 <eγ<98< th=""><th>135</th><th>415,621</th><th>0.21</th></eγ<98<>	135	415,621	0.21	
-0.9 <cosθγ<0.9< th=""><th>126</th><th>290,768</th><th>0.23</th></cosθγ<0.9<>	126	290,768	0.23	
106 <m(b,b)<145< th=""><th>108</th><th>129,259</th><th>0.30</th></m(b,b)<145<>	108	129,259	0.30	

6. Result

Next approach

h->bb channel

- · do analysis for right handed beam polarization
- use Multivariate Data Analysis

Multivariate Data Analysis

Signal sum of weights: 183.675 Background sum of weights: 6.92861e+07

Input parameters

- Missing energy
- Polar angle of photon
- Photon energy
- bb invariant mass

Multivariate Data Analysis

7. Summary

- I simulated and analyzed e+e- -> h gamma process
- Significance for e+e- ->hγ process

~ 0.30 for SM at \sqrt{s} =250 GeV, 2000 fb⁻¹

- model independent upper limit for cross section : $\sigma_{h\gamma}$ < 1.6 fb(95% C.L.)
- Corresponding bounds : -4.82< $\bar{c}_{\gamma z}$ <3.33

%This is the first look at this process and the results are very preliminary.

Ongoing

- · do analysis for right handed beam polarization
- use Multivariate Data Analysis

Next step

- try h->WW* channel
- \cdot interpret cyZ bounds based on full 1-loop calculation
- Understand the role of this measurement in one global EFT analysis

Back up

Back ground

		characteristic	How to remove		
ff		back to back	cosθ2f		
γZ→γ(f f)	γII	few track number	nTrack		
	yqq,ycc	no b	b-tag		
	γbb	different angular distribution	Εγ,cosθγ		
	common	m(bb)~m(Z)	m(ff)		
W+W-→4f Z+Z-	4j	4 jet	Y3→2, Eγ		
	2j+2l	Nisolep=2	$N_{isolep}=0, E\gamma$		
	2j+vv	large missing energy	E _{miss} ,Εγ		
	2j+lv	missing energy	N _{isolep} =0, E _{miss}		
	common	m(ff)=m(W)	b-tag, m(ff)		
	l:lepton q:quark j:jet v:neutrino 26				

About Box diagram

- ► This diagram is also exist
- We ignore this first, and if calculate of this diagram is finished, we include this.