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Normalization of denominator

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene

5

Denominator must be correctly normalized to give Probability
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5

σ varies depending on  av
Ratio of |M|^2  over events gives  σ  ()     

|M(bsm)|2
|M(sm)|2

               / L250     =     σ (remaining)σ (expect)*L250
N geneDenomi= Σ

MCremain

automatically Acc is included
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Ẑµν

)H

+
1 2v
(ζ̃ Z

ZẐ
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Parameter estimation

Binned analysis w/ shape

+SM

Bkgs are included

ME           :  is LO
Sample     :  no ISR no BSL
Denomi.   :  is calculated without ISR and BSL
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fusion processes, and NBSM (⃗aZ) is the number of ex-609

pected events for BSM models determined with the610

anomalous parameters a⃗Z . The relative error of the pro-611

duction cross-section of the ZH process δσZH refers to612

full-simulation based studies, in which 2.0% and 3.0%613

for
√
s =250 GeV and 500 GeV are respectively re-614

ported under accumulated luminosities of 250 fb−1 and615

500 fb−1 [26, 27]. For the ZZ-fusion analysis, the H →616

bb̄ decay channel is selected. However, the partial width617

of the Higgs to Z could be potentially varied due to the618

anomalous couplings, and it brings variation of the total619

width and gives variation of branching fractions. These620

overall considerations are practically difficult, and theo-621

retical considerations are necessary to remove ambiguity622

of the branching fractions depending on the anomalous623

couplings. To cancel out the variation of BRHbb and624

focus on the production vertex, the relative error δσeeH625

is evaluated and used by propagating two independent626

measurements: σeeH = (σeeH · BRHbb)/BRHbb. The627

measurement of relative error δ(σeeH ·BRHbb) is evalu-628

ated for
√
s =250 GeV with 250 fb−1 and 500 GeV with629

500 fb−1 based on the full simulation studies, which630

are 27.0% and 4.0% [28], respectively. The relative631

error of the branching fraction δBRHbb is also given632

under the model independent measurements as 2.9 %633

and 3.5 % for
√
s =250 GeV and 500 GeV with the634

same condition [29]. Thus, an input value to δσeeH is635

27.16 % and 5.32 % for
√
s =250 GeV with 250 fb−1

636

and 500 GeV with 500 fb−1, respectively. For combined637

results which are given based on the combination of638

250 GeV and 500 GeV, the relative error δBRHbb mea-639

sured at 250 GeV is possible to be propagated, where640

2.2 % is inputted as the error of a weighted average of641

the branching fraction.642

VII. SENSITIVITY TO ANOMALOUS ZZH643

COUPLINGS644

In this section, we evaluate the sensitivity to the645

anomalous ZZH couplings at the ILC experiment for646

both of the planned center-of-mass energies
√
s =647

250 and 500 GeV. Both beam polarization states of648

P(e−, e+) = (−80%,+30%) and (+80%, −30%), and649

nominal integrated luminosities are assumed, which are650

respectively 250 fb−1 and 500 fb−1 for
√
s = 250 and651

500 GeV. As a first step, the sensitivity to the anoma-652

lous couplings are separately evaluated by giving each653

information independently, the kinematical distribution654

and the production cross-section, to confirm both of655

impacts. Secondary, the achievable sensitivity to the656

anomalous couplings is evaluated by using both infor-657

mations and performing simultaneous fitting while set-658

ting the parameters a⃗Z to be completely free.659

A. Impacts of shape and normalization at660

250 GeV661

As demonstrations of the evaluation of the sensitivity662

to the anomalous ZZH couplings, two channels µ+µ−H663

and qq̄bb̄ of the ZH process analyzed in the previous664

section are used. The sensitivities to each parameter are665

given based on the χ2
shape and χ2

norm functions defined666

in the previous Section VI.667

The kinematical distribution used for the evaluation668

are properly transferred from the “generator-level” dis-669

tribution to the “detector-level” distribution to realize670

the realistic distribution with the corresponding detec-671

tor response function f , which is discussed in Section672

VI. Fig. 14 show the sensitivity to the anomalous ZZH673

couplings in one parameter space aZ , bZ or b̃Z , where674

∆χ2 is given as∆χ2 = χ2−χ2
min and χ2

min is exactly 0 in675

the analysis condition since 0 value exactly recovers the676

SM distributions. To evaluate the impact of the vari-677

ation of the kinematical distribution, two-dimensional678

distributions x(cos θZ ,∆Φff̄ ) are used for both chan-679

nels µ+µ−H and qq̄bb̄. Additionally, the impact of the680

variation of the normalization is evaluated by taking the681

µ+µ−H channel as an example. Since the parameter aZ682

giving the SM-like coupling does not make any kinemat-683

ical distribution change at all, the values of ∆χ2 is uni-684

formly 0 over the parameter space whereas the normal-685

ization is strongly affected by the parameter aZ . The686

parameters bZ and b̃Z can change the kinematical dis-687

tribution symmetrically and asymmetrically, therefore,688

the impact of the shape can be clearly observed in the689

plots. Both parameters, bZ and b̃Z , can also vary the690

normalization as with the parameter aZ . It also turns691

out that the impact of the shape from both channels692

µ+µ−H and qq̄bb̄ give comparable power for the verifi-693

cation of the anomalous ZZH couplings. This is simply694

because the statistic of the qq̄bb̄ hadronic channel is ten695

times bigger than that of the µ+µ−H channel although696

the hadronic channel has disadvantages such as the lim-697

ited sensitivity of ∆Φff̄ [0–π] due to inapplication of698

jet-charge identification and the large migration effects.699

B. Limits in a three parameter space at 250 GeV700

The sensitivity to the anomalous ZZH couplings at701 √
s = 250 GeV is evaluated assuming the integrated702

luminosity of 250 fb−1 with both of the beam polar-703

ization states. The kinematical distributions of leading704

four channels are combined, which are three channels of705

the ZH process e+e−H, µ+µ−H, and qq̄h(H → bb̄),706

+SM

Reco Reco

is normalized
    with |M|2 of remaining events

+SM

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene

5

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene

5

Denomi
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Parameter estimation

ME           :  is LO
Sample     :  with ISR with  BSL
Denomi.   :  is calculated without ISR and BSL
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fusion processes, and NBSM (⃗aZ) is the number of ex-609

pected events for BSM models determined with the610

anomalous parameters a⃗Z . The relative error of the pro-611

duction cross-section of the ZH process δσZH refers to612

full-simulation based studies, in which 2.0% and 3.0%613

for
√
s =250 GeV and 500 GeV are respectively re-614

ported under accumulated luminosities of 250 fb−1 and615

500 fb−1 [26, 27]. For the ZZ-fusion analysis, the H →616

bb̄ decay channel is selected. However, the partial width617

of the Higgs to Z could be potentially varied due to the618

anomalous couplings, and it brings variation of the total619

width and gives variation of branching fractions. These620

overall considerations are practically difficult, and theo-621

retical considerations are necessary to remove ambiguity622

of the branching fractions depending on the anomalous623

couplings. To cancel out the variation of BRHbb and624

focus on the production vertex, the relative error δσeeH625

is evaluated and used by propagating two independent626

measurements: σeeH = (σeeH · BRHbb)/BRHbb. The627

measurement of relative error δ(σeeH ·BRHbb) is evalu-628

ated for
√
s =250 GeV with 250 fb−1 and 500 GeV with629

500 fb−1 based on the full simulation studies, which630

are 27.0% and 4.0% [28], respectively. The relative631

error of the branching fraction δBRHbb is also given632

under the model independent measurements as 2.9 %633

and 3.5 % for
√
s =250 GeV and 500 GeV with the634

same condition [29]. Thus, an input value to δσeeH is635

27.16 % and 5.32 % for
√
s =250 GeV with 250 fb−1

636

and 500 GeV with 500 fb−1, respectively. For combined637

results which are given based on the combination of638

250 GeV and 500 GeV, the relative error δBRHbb mea-639

sured at 250 GeV is possible to be propagated, where640

2.2 % is inputted as the error of a weighted average of641

the branching fraction.642

VII. SENSITIVITY TO ANOMALOUS ZZH643

COUPLINGS644

In this section, we evaluate the sensitivity to the645

anomalous ZZH couplings at the ILC experiment for646

both of the planned center-of-mass energies
√
s =647

250 and 500 GeV. Both beam polarization states of648

P(e−, e+) = (−80%,+30%) and (+80%, −30%), and649

nominal integrated luminosities are assumed, which are650

respectively 250 fb−1 and 500 fb−1 for
√
s = 250 and651

500 GeV. As a first step, the sensitivity to the anoma-652

lous couplings are separately evaluated by giving each653

information independently, the kinematical distribution654

and the production cross-section, to confirm both of655

impacts. Secondary, the achievable sensitivity to the656

anomalous couplings is evaluated by using both infor-657

mations and performing simultaneous fitting while set-658

ting the parameters a⃗Z to be completely free.659

A. Impacts of shape and normalization at660

250 GeV661

As demonstrations of the evaluation of the sensitivity662

to the anomalous ZZH couplings, two channels µ+µ−H663

and qq̄bb̄ of the ZH process analyzed in the previous664

section are used. The sensitivities to each parameter are665

given based on the χ2
shape and χ2

norm functions defined666

in the previous Section VI.667

The kinematical distribution used for the evaluation668

are properly transferred from the “generator-level” dis-669

tribution to the “detector-level” distribution to realize670

the realistic distribution with the corresponding detec-671

tor response function f , which is discussed in Section672

VI. Fig. 14 show the sensitivity to the anomalous ZZH673

couplings in one parameter space aZ , bZ or b̃Z , where674

∆χ2 is given as∆χ2 = χ2−χ2
min and χ2

min is exactly 0 in675

the analysis condition since 0 value exactly recovers the676

SM distributions. To evaluate the impact of the vari-677

ation of the kinematical distribution, two-dimensional678

distributions x(cos θZ ,∆Φff̄ ) are used for both chan-679

nels µ+µ−H and qq̄bb̄. Additionally, the impact of the680

variation of the normalization is evaluated by taking the681

µ+µ−H channel as an example. Since the parameter aZ682

giving the SM-like coupling does not make any kinemat-683

ical distribution change at all, the values of ∆χ2 is uni-684

formly 0 over the parameter space whereas the normal-685

ization is strongly affected by the parameter aZ . The686

parameters bZ and b̃Z can change the kinematical dis-687

tribution symmetrically and asymmetrically, therefore,688

the impact of the shape can be clearly observed in the689

plots. Both parameters, bZ and b̃Z , can also vary the690

normalization as with the parameter aZ . It also turns691

out that the impact of the shape from both channels692

µ+µ−H and qq̄bb̄ give comparable power for the verifi-693

cation of the anomalous ZZH couplings. This is simply694

because the statistic of the qq̄bb̄ hadronic channel is ten695

times bigger than that of the µ+µ−H channel although696

the hadronic channel has disadvantages such as the lim-697

ited sensitivity of ∆Φff̄ [0–π] due to inapplication of698

jet-charge identification and the large migration effects.699

B. Limits in a three parameter space at 250 GeV700

The sensitivity to the anomalous ZZH couplings at701 √
s = 250 GeV is evaluated assuming the integrated702

luminosity of 250 fb−1 with both of the beam polar-703

ization states. The kinematical distributions of leading704

four channels are combined, which are three channels of705

the ZH process e+e−H, µ+µ−H, and qq̄h(H → bb̄),706

+SM +SM

MC true Reco
+ ISR recover

Reco
+ ISR recover

+SM

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene

5

is normalized
    with |M|2 of remaining events

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
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cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2
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cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ
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Parameter estimation

ME           :  is LO
Sample     :  with ISR with  BSL
Denomi.   :  is calculated including ISR and BSL with Wizard interface
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fusion processes, and NBSM (⃗aZ) is the number of ex-609

pected events for BSM models determined with the610

anomalous parameters a⃗Z . The relative error of the pro-611

duction cross-section of the ZH process δσZH refers to612

full-simulation based studies, in which 2.0% and 3.0%613

for
√
s =250 GeV and 500 GeV are respectively re-614

ported under accumulated luminosities of 250 fb−1 and615

500 fb−1 [26, 27]. For the ZZ-fusion analysis, the H →616

bb̄ decay channel is selected. However, the partial width617

of the Higgs to Z could be potentially varied due to the618

anomalous couplings, and it brings variation of the total619

width and gives variation of branching fractions. These620

overall considerations are practically difficult, and theo-621

retical considerations are necessary to remove ambiguity622

of the branching fractions depending on the anomalous623

couplings. To cancel out the variation of BRHbb and624

focus on the production vertex, the relative error δσeeH625

is evaluated and used by propagating two independent626

measurements: σeeH = (σeeH · BRHbb)/BRHbb. The627

measurement of relative error δ(σeeH ·BRHbb) is evalu-628

ated for
√
s =250 GeV with 250 fb−1 and 500 GeV with629

500 fb−1 based on the full simulation studies, which630

are 27.0% and 4.0% [28], respectively. The relative631

error of the branching fraction δBRHbb is also given632

under the model independent measurements as 2.9 %633

and 3.5 % for
√
s =250 GeV and 500 GeV with the634

same condition [29]. Thus, an input value to δσeeH is635

27.16 % and 5.32 % for
√
s =250 GeV with 250 fb−1

636

and 500 GeV with 500 fb−1, respectively. For combined637

results which are given based on the combination of638

250 GeV and 500 GeV, the relative error δBRHbb mea-639

sured at 250 GeV is possible to be propagated, where640

2.2 % is inputted as the error of a weighted average of641

the branching fraction.642

VII. SENSITIVITY TO ANOMALOUS ZZH643

COUPLINGS644

In this section, we evaluate the sensitivity to the645

anomalous ZZH couplings at the ILC experiment for646

both of the planned center-of-mass energies
√
s =647

250 and 500 GeV. Both beam polarization states of648

P(e−, e+) = (−80%,+30%) and (+80%, −30%), and649

nominal integrated luminosities are assumed, which are650

respectively 250 fb−1 and 500 fb−1 for
√
s = 250 and651

500 GeV. As a first step, the sensitivity to the anoma-652

lous couplings are separately evaluated by giving each653

information independently, the kinematical distribution654

and the production cross-section, to confirm both of655

impacts. Secondary, the achievable sensitivity to the656

anomalous couplings is evaluated by using both infor-657

mations and performing simultaneous fitting while set-658

ting the parameters a⃗Z to be completely free.659

A. Impacts of shape and normalization at660

250 GeV661

As demonstrations of the evaluation of the sensitivity662

to the anomalous ZZH couplings, two channels µ+µ−H663

and qq̄bb̄ of the ZH process analyzed in the previous664

section are used. The sensitivities to each parameter are665

given based on the χ2
shape and χ2

norm functions defined666

in the previous Section VI.667

The kinematical distribution used for the evaluation668

are properly transferred from the “generator-level” dis-669

tribution to the “detector-level” distribution to realize670

the realistic distribution with the corresponding detec-671

tor response function f , which is discussed in Section672

VI. Fig. 14 show the sensitivity to the anomalous ZZH673

couplings in one parameter space aZ , bZ or b̃Z , where674

∆χ2 is given as∆χ2 = χ2−χ2
min and χ2

min is exactly 0 in675

the analysis condition since 0 value exactly recovers the676

SM distributions. To evaluate the impact of the vari-677

ation of the kinematical distribution, two-dimensional678

distributions x(cos θZ ,∆Φff̄ ) are used for both chan-679

nels µ+µ−H and qq̄bb̄. Additionally, the impact of the680

variation of the normalization is evaluated by taking the681

µ+µ−H channel as an example. Since the parameter aZ682

giving the SM-like coupling does not make any kinemat-683

ical distribution change at all, the values of ∆χ2 is uni-684

formly 0 over the parameter space whereas the normal-685

ization is strongly affected by the parameter aZ . The686

parameters bZ and b̃Z can change the kinematical dis-687

tribution symmetrically and asymmetrically, therefore,688

the impact of the shape can be clearly observed in the689

plots. Both parameters, bZ and b̃Z , can also vary the690

normalization as with the parameter aZ . It also turns691

out that the impact of the shape from both channels692

µ+µ−H and qq̄bb̄ give comparable power for the verifi-693

cation of the anomalous ZZH couplings. This is simply694

because the statistic of the qq̄bb̄ hadronic channel is ten695

times bigger than that of the µ+µ−H channel although696

the hadronic channel has disadvantages such as the lim-697

ited sensitivity of ∆Φff̄ [0–π] due to inapplication of698

jet-charge identification and the large migration effects.699

B. Limits in a three parameter space at 250 GeV700

The sensitivity to the anomalous ZZH couplings at701 √
s = 250 GeV is evaluated assuming the integrated702

luminosity of 250 fb−1 with both of the beam polar-703

ization states. The kinematical distributions of leading704

four channels are combined, which are three channels of705

the ZH process e+e−H, µ+µ−H, and qq̄h(H → bb̄),706

Reco

+SM +SM

Reco
+ ISR recover

Reco
+ ISR recover

+SM

is normalized
    with |M|2 of remaining events

χ2 = −2 log∆L = −2(logL(⃗aV )− logLSM)

L(⃗aV ) = Lshape(⃗aV ) · Lnorm(⃗aV )

=
events∏

i=1

Pshape(p⃗
µ
i ; a⃗V ) · Pnorm(⃗aV )

Pshape(p⃗
µ; a⃗V ) =

1

Acc(p⃗ µ) σ(⃗aV )

∫
dΦ̄ |M(⃗̄p µ; a⃗V )|2 T (p⃗ µ → ⃗̄p µ)Acc(p⃗

µ)

Pshape(p⃗
µ; a⃗V ) =

∫
dΦ̄ |MZh(⃗̄p µ; a⃗V )|2 T (p⃗ µ; ⃗̄p µ) +

∫
dΦ̄ |MZZ(⃗̄p µ)|2 T (p⃗ µ; ⃗̄p µ)

σZh(⃗aV ) + σZZ

T (p⃗ µ; ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

T (p⃗ µ → ⃗̄p µ) = δ(p⃗ µ − ⃗̄p µ)

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (p⃗ µ)|MZH→µµH(p⃗ µ; a⃗V )|2

AµµH
cc (p⃗ µ)σZH→µµH (⃗aV )

Pshape(p⃗
µ; a⃗V ) =

AµµH
cc (O⃗)|MµµH(p⃗ µ; a⃗V )|2 + AµµZ

cc |MµµZ(p⃗ µ)|2

AµµH
cc (⃗aV )σZH→µµH (⃗aV ) + AµµZ

cc σZZ→µµZ

AµµZ
cc =

ZZ → µµZ accpt

ZZ → µµZ gene
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