Continuation of General physics meeting 2018/04/14

## Normalization of denominator

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_V) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_V)|^2}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_V)}$$

$$P_{\text{shape}}(\vec{p}^{\,\mu};\vec{a}_{V}) = \frac{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})|\mathcal{M}_{ZH\to\mu\mu H}(\vec{p}^{\,\mu};\vec{a}_{V})|^{2}}{A_{cc}^{\mu\mu H}(\vec{p}^{\,\mu})\sigma_{ZH\to\mu\mu H}(\vec{a}_{V})}$$

Denominator must be correctly normalized to give Probability

 $\sigma$  varies depending on av Ratio of  $|M|^2$  over events gives  $\sigma$  () automatically Acc is included



## **Parameter estimation**



## **Parameter estimation**



## **Parameter estimation**

