Continuation of
 General physics meeting 2018/04/14

Normalization of denominator

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)} \quad P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Denominator must be correctly normalized to give Probability
σ varies depending on av Ratio of $|\mathrm{M}| \wedge 2$ over events gives $\sigma()$ automatically Acc is included

$$
\begin{aligned}
\text { Denomi }= & \sum_{\text {\#of expected events }}^{\text {MCremain }} \frac{|\mathrm{M}(\mathrm{bsm})| 2}{\mathrm{IM}(\mathrm{sm}) \mid 2} \underbrace{\frac{\sigma(\text { expect })^{*} \mathrm{~L} 250}{\mathrm{~N} \text { gene }}}_{\begin{array}{c}
\text { original } \\
\text { MC weight }
\end{array}}
\end{aligned} / \mathrm{L} 250=\begin{gathered}
\sigma \text { (remaining) } \\
\text { which depends on av }
\end{gathered}
$$

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : no ISR no BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Denomi
is normalized with $\mathrm{I} \mathrm{M} \mid 2$ of remaining events \downarrow

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
Denomi. : is calculated without ISR and BSL

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

Denomi
is normalized with $\mathrm{I} \mathrm{M} \mid 2$ of remaining events

Parameter estimation

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu}\left(\vec{p}^{\mu}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
Sample : with ISR with BSL
is normalized
with $\mathrm{I} \mathrm{M} \mid 2$ of remaining events

Denomi. : is calculated including ISR and BSL with Wizard interface

$$
\Delta \chi^{2}=\chi^{2}-\chi_{m i n}^{2}
$$

