

Report from Technical Coordination

Karsten Buesser

ILD Phone Meeting 09.05.2018

ILD Integration

- Update fully integrated ILD model
- ILD Integration Task Force (Kick-off meeting in February at LAL)
- Bottom-up process based on information from sub-detectors:
 - Interface Control Documents
- Input from dedicated task forces
 - Central Design and Integration Group
 - ad-hoc technical groups
 - mechanical simulations (seismic events)
 - cables and services
- Cooperation with global efforts
 - ILC infrastructure groups (dedicated workshops)
 - SiD
 - ILC machine groups

Subdetector	
VTX	in progress
SIT/FTD/ETD	in progress
TPC	draft on EDMS
Si-ECAL	draft on EDMS
Sc-ECAL	draft on EDMS
A-HCAL	discussions have started
SD-HCAL	in progress
FCAL	draft on EDMS
Yoke/Muon	???
ILD Conventions/Rules	draft on EDMS

Mechanical Simulations

At least two groups have started to look into impact of seismic events on ILD subdetectors

- Cross-check of simulations by exchange of models still pending
- Standard description for earthquake spectra is now on EDMS

Maximum displacement:

17,3 mm

Smallest gap between ECAL rings along z:

0,98 mm

Smallest gap between ECAL module along phi: **1,89mm**

Standard Earthquake Spectra in Kitakami

Acceleration Response Spectrum at Kitakami site

- Assembled by T. Tauchi
- Details on EDMS:
 - D*1164345
 - or follow WBS tree on edmsdirect.desy.de

Site-dependent parameters in seismic analysis for hard soil

A₀ (150 at Kitakami site): Basic maximum acceleration of ground motion

 V_0 (A₀/15 hard): Basic maximum velocity of ground motion

R_A (1.0 hard): conversion coefficient of recurrence intervals (std:100y) of the maximum acceleration

R_v (1.0 hard): conversion coefficient of recurrence intervals (std:100y) of the maximum velocity

G_A (1.0 hard): site-dependent (ground type) correction factor of the maximum acceleration

G_v (1.0 hard): site-dependent (ground type) correction factor of the maximum velocity

 F_h (1.25/1.0 hard): Correction factor by damping, 1.5/(1+10 ς) with $\varsigma = 0.02/0.05$ for steel/concrete

 f_A (2.5 hard): ratio of $G_AR_AA_0$ of $S_a(T, \varsigma)$ in $dT_c < T < T_c$, amplification factor

 f_v (2.0 hard): ratio of $G_vR_vV_0$ of the velocity spectrum $S_v(T, \varsigma) = S_a(T, \varsigma)T/2\pi$ in $T_c < T$, amplification factor

d (0.5 hard): dT_c/T_c , ratio of lower bound of period (dT_c) relative to the upper one ($T_c=0.33$ sec hard) in the constant $S_a(T, \varsigma)$

Seismic Analysis with the class-1 geology (hard soil)

following the guideline of construction loads by Architectural Institute of Japan, also ISO3010

500

(1)
$$0 \le T \le dT_c$$
 : $S_a = \left(1 + \frac{f_A - 1}{d} \frac{T}{T_c}\right) F_h G_A R_A A_0$

$$(2) dT_c \le T \le T_c : S_a = f_A F_h G_A R_A A_0$$

$$(3) \ T_c \leq T \ : \ S_a = \frac{2\pi f_V F_h G_V R_V V_0}{T}$$
 (constant velocity spectrum)

$$T_c = \frac{2\pi f_V G_V R_V V_0}{f_A G_A R_A A_0} = 0.33 \text{sec}$$

$$dT_c = 0.17 \text{sec for } d = 0.5$$

Frequency:
$$f = \frac{1}{T}$$
 Displacement: $x(f, \zeta) = \frac{S_a(T, \zeta)}{(2\pi f)^2}$

Detector Utilities and Services

- ILD technical description gets more realistic
- Input from realistic subsystem prototypes
- Planning for ILD environments (halls, infrastructure) advances
- Need to close the loop urgently!

Detector Utilities in Underground Areas

Service gallery

• 3F-5F

Utility/service cavern

Survey for Sub-Detectors (Y. Sugimoto)

Items to be clarified

- Electronics (19 inch) racks
 - Number and location (platform, service gallery, or somewhere else)
 - AC power (Quite large power consumption (>1 MW) for CMS o ATLAS. What about in the ILD case?)
 - Heat loss (= AC power-DC power to the detector)
- Sub-detector cooling system
 - Location (Utility/Service Cavern?) and space requirement
 - Request for the cooling water (LCW, chilled, or normal?, how much power?) for the 2nd loop of the cooling system
- Gas system
 - Location and space requirement
- Laser system
 - Location (Utility/Service Cavern?) and area
- PC farm for data processing (data reduction, event build, etc.)
 - Location (Underground or surface?) and area
 - AC power consumption

Items to be clarified

An excel file for survey is under construction

Y. Sugimoto

Survey for Sub-Detectors (Y. Sugimoto)

Items to be clarified

- Electronics (19 inch) racks
 - Number and location (platform, service gallery, or somewhere else)

Input required before Fukuoka Workshop

- Sub-de
 - Loca

- that is in 19 days -
- Request for the cooling water (LCW, chilled, or normal?, how much power?) for the 2nd loop of the cooling system
- Gas system
 - Location and space requirement
- Laser system
 - Location (Utility/Service Cavern?) and area
- PC farm for data processing (data reduction, event build, etc.)
 - Location (Underground or surface?) and area
 - AC power consumption

Items to be clarified

Y. Sugimoto

Cable Paths

- Need to review the ILD cable and utility paths
 - better understanding of sub-detector connections
- Roman has kindly agreed to coordinate this effort:
 - review subdetector assumptions
 - ICD documents provide input
 - look into possible positions for patch panels
 - understand additional utilities
 - cooling, gas, etc.

ILD Costing Group

E-JADE

- Costing Group set up in Ichinoseki
- Chair: Henri Videau
- Work on Cost Work
 Breakdown Sheets
- Form a basis for better understanding of cost derivatives

Members

Chair: H. Videau

Deputy: K. Buesser

Technical Support: S. Pavy

VTX/CMOS, SIT: A. Besson

VTX/DEPFET, FTD: M. Vos

TPC: P. Colas

Si-ECAL: H. Videau

Sc-ECAL: T. Takeshita

A-HCAL: F. Sefkow

SD-HCAL: I. Laktineh

VFS: Y. Benhammou

Muon: V. Saveliev

Coil/Yoke: U. Schneekloth

		Steps/Needs	Quantities	Unit	Tools	Place	Unit cost/time	Cost in k€	M.Y	£
tre	omac	netic calorimeter	- Caramatoo	Cint		1,300	Sim Cookinio	158159.14	115.8	
	arrel		1					105552.807	77.1	
.1		le structure construction	40					14461.54	51.1	
	2.1.1.1	Material procurements and opera	tions					12209.04	5	
		Tungsten plates (thickness tolerance +- 40 µm) Thickness : 1.05 – 2.1 – 4.2 mm	90.3	ton	2000	Industry Several suppliers	120	10833		
		Dimensional inspection of Wiplates	24000	plates	3D measurement system	HOME/Industry			5	?? No:
		Carbon fibres prepreg 1K for Histructure	6000	m ²		Industry	0.09	540		1
		Carbon fibres prepreg 3K for alveolar structure	13000	m²		Industry	0.05	650		1
		Thin carbon plate (2mm) with 12K fibres	40	plates		Industry	1	40		1
		Thick carbon plate (15mm) with 12K tibres	40	plates		Industry	2	80		1
		Rails (abrication (male + female parts)	50	rails		Industry	0.5	40]
		Metalinsens	980	inserts		Industry	0.024	23.04]
	2.1.1.2	Monolayer alveolar structure	600			31		1812	15	
		Tools procurements		10				342	0	
		Hextool moulds	6	moulds		Industry	50	300	()	1
		Steel ground cores	30	cores	A 1000 5000	Industry	1	30		1
		Storage boxes	40	boxes	Specific boxes	Industry	0.300	12		1
		Operations						1470	15]
		Dimensional inspections (cores & moulds)	all		30 measurement system	Industry				1
		Wisneing operations	sno	viosonion	Clean more	Industry	2 days	1200	12	1

ILD Technical Deliverables

- Draft of technical content for the IDR assembled by
 Claude and sent to the ET and the technical conveners
- Contains a lot of plots (most of them to be updated) and a skeleton layout

Should be a good starting point for the editorial team of

the IDR (tbn)

Technical Draft Content of the ILD Design Report

Version of April 16th, 2018

C. Vallée

Content	
1. THE SCIENCE CASE FOR THE ILC	3
2. ILC ENVIRONMENT	3
3. ILD CONCEPT	4
3.1. OVERALL CONCEPT	
3.2. OPTIMISATION PATH	5
4. DETECTOR LAYOUT AND TECHNOLOGIES	6
4.1. OVERALL DETECTOR STRUCTURE	6
4.1.1. Global structure and parameters	
4.1.2. Subdetector layouts	
4.2. SUBDETECTOR TECHNOLOGY STATUS	_
4.2.1. Vertex (~3 pages of plain text)	
4.2.3. TPC (~3 pages of plain text)	
4.2.4. Calorimeters (~5 pages of plain text)	
4.2.5. Very Forward System (~2 pages of plain text)	14
4.2.6. Iron Instrumentation (~1 page of plain text)	
5. ILD GLOBAL INTEGRATION	15
5.1. INTERNAL INTEGRATION	
5.2. EXTERNAL INTEGRATION	
5.2.1. Cavern ancillary services	
5.2.2. Data Acquisition	
5.4. COIL & YOKE STUDIES	
5.5. BEAM BACKGROUND STUDIES	
5.6. ALIGNMENT/CALIBRATION PROCEDURES	
6. DETECTOR MODELLING	
7. DETECTOR PERFORMANCE	
8. COSTING	
8.1. WBS TABLES	
0.4. GLUDAL GUƏTING	∠ I

Documentation

- Plan: Assemble complete ILD technical documentation on ILC EDMS...
- Everyone can use EDMS now!
- Go to: <u>edmsdirect.desy.de</u> -> "ILD TDR"
 - linked from ILD Confluence
- Access ILD Work Breakdown Structure Tree
- Just view and/or download all public ILD documents in WBS
- Some documents are restricted, need EDMS account to access those
 - for experts
 - if you feel like an expert, just contact me for an EDMS account

- ILD Technical Design Documentation 🥰
 - + A-HCAL 🗱 🗹
 - + Coil 🥰 🗹
 - + Configuration Management 🥰 🗹
 - + Design Integration 🥰 🗹
 - + Detector Assembly and Operation Planning 🥰 🗹
 - + Intermediate Tracking 🥰 🗹
 - + Machine Elements 🥰 🗹
 - + Physics Simulation 🥰 🗹
 - + Project Management 🥰 🗹
 - + Sc-ECAL 🥰 🗹
 - + SD-HCAL 🥰 🗹
 - + Si-ECAL 🥰 🗹
 - + Site and Buildings 🥰 🗹
 - + Specifications and Parameters 🥰 🗹
 - + Structural Engineering 🥰 🗹
 - 🕇 Technical Documentation 🔌 🗹
 - + TPC 🗱 🗹
 - + Vertex Detector 🥰 🗹
 - + Very Forward Systems 🥰 🗹
 - + Yoke+Muon 🥰 🗹

Plans for Fukuoka Workshop

- Technical talks from subdetectors take place in the technical workshop sessions
 - no dedicated technical agenda with ILD label
- Will use Saturday morning sessions (ILD parallel) for possible discussion on ILD technical deliverable document
 - Discussion in next technical convener meeting on May 14th
- Advertisement:
 - Talk in summary session on Friday by Claude: "Highlights and Visions of LC Detectors"

Latest News from AHCAL

- Large AHCAL prototype is in CERN testbeam
- First muons seen yesterday, first hadrons expected for later today
- Congratulations!

