2018/05/11

status

Unbinned

The unbinned estimation

$$
\begin{aligned}
\mathcal{L}\left(\vec{a}_{V}\right) & =\mathcal{L}_{\text {shape }}\left(\vec{a}_{V}\right) \cdot \mathcal{L}_{\text {norm }}(\vec{a} \\
& \text { MCevents } \\
& =\prod_{i=1} P_{\text {shape }}\left(\vec{p}_{i}^{\mu} ; \vec{a}_{V}\right)
\end{aligned}
$$

seems to be sensitive to ISR \& BSL

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

ME : is LO
 Sample : No ISR \& BSL

Denom. : is calculated w/o ISR \& BSL

ME : is LO
Sample : with ISR \& BSL
Denom. : is calculated w/o ISR \& BSL

$$
\chi^{2}=-2 \log \Delta \mathcal{L}
$$

Likelihood

$$
L\left(\vec{a}_{V}\right)=\Pi_{b i n=1}^{N} \frac{\lambda_{b i n}^{k}\left(\vec{a}_{V}\right)}{k_{b i n}!} e^{-\lambda_{b i n}\left(\vec{a}_{V}\right)}
$$

Expectation on certain bin $\quad \lambda\left(\vec{a}_{V}\right)=L *($ BinArea $) * A_{c c}^{\mu \mu H}\left(\overrightarrow{p^{\mu}}\right)\left|M_{\mu \mu H}\left(\vec{p}^{\mu} \vec{a}_{V}\right)\right|^{2}$
Pmu＋，Pmu－，Precoil（momentum）

$$
E=\sqrt{ }\left(m^{\wedge} 2+\left|P^{\wedge}\right|^{2}\right)
$$

$$
\text { => } 9 \mathrm{dim} \text { array } \quad \Rightarrow \text { center values }
$$

Normalization is included ．
How I should separate it ．
BinArea calc．has some troubles
try to investigate．

