A first look of new MC samples for $h \to \mu^+ \mu^-$ analysis

Shin-ichi Kawada (DESY) ALCW2018 @ Fukuoka, Japan 2018/May/28 - June/1

Introduction

- In ILD, a MC production campaign has been started using ILCSoft v02-00.
- This talk is a simple report of first look of these samples for $h \to \mu^+ \mu^-$ analysis.
 - I checked ffh_mumu samples only, but some comparison between DBD and new is made.
 - I am a newcomer of ILCSoft v02-00, also report some problems when I worked for this.
 - Latest analysis results with DBD-style samples are already shown in Monday (Higgs/EW).

Quick Summary of MC Samples

	New	DBD
ILCSoft version	v02-00	v01-16
Detector model	ILD_I5(s5)_o1_v02	ILD_o1_v05
Overlaid background	$\gamma\gamma \rightarrow$ hadrons <1.2> e^+e^- seeable pairs	$\gamma\gamma$ \rightarrow hadrons <1.7>
E _{CM}	only 500 GeV now	250 GeV, 500 GeV

General Event Reconstruction

Real Working World (nnh500)

Real Working World (qqh500)

First Problem

- In default, SatoruJetFinder never works!
 - This processor contains Fortran code.
 - At some point (v01-19-05 -> v01-19-06?), cernlib is excluded from ILCSoft. The cernlib is used for Fortran code.
 - With experts help, now I can use SatoruJetFinder.

Fortran/cernlib

- If you are an expert or working with expert, then no problem.
- But consider a newcomer without enough knowledge and without expert's help.
- Other Fortran codes will also be affected.
 - EventShape_Fortran, BCalTagEfficiency
 - others?

 What should we do for Fortran code? We don't need to decide now, but discussion is necessary in future.

Second Problem

- Performance of IsolatedLeptonTagger is too funny.
 - Reconstruction efficiency (correctly reconstruct one mu+ and on-) is greater than 90% in DBD, but is less than 5% in new samples!

Possible Reason

- Treatment in z-direction has been changed.
 - In DBD, everything happened in (0,0,0). But in new, the z-direction is smeared up to ~200 μ m.

MVA in IsolatedLeptonTagger

z0sig is the one of the input to MVA in IsolatedLeptonTagger

z0-related variables are changed significantly

need to re-train or use simple cut analysis

Treatment in z-direction

- In any case, the treatment in z-direction has been changed. No longer (0,0,0).
- The variables d0 and z0 (and d0sig, z0sig) need to be defined with respect to primary vertex.
 - This will affect to everything, not only IsolatedLeptonTagger!

This discovery is already triggered of expert's discussion.

Third Problem (1)

- I found 2 strange MCParticle muons (genstat == 2) with the energy greater than 500 GeV.
 - ID = 108161, Event = 19926 (3300 GeV)
 - ID = 108163, Event = 6914 (92300 GeV)
- I did not find this kind of strange MCParticle in DBD samples.

Third Problem (2)

- Common thing
 - Higgs decays to two muons, the simstat of one muon is "c", and another is "l".
 - These two muons go to PDG94.
 - PDG94 produces two muons, and one muon from PDG94 has too high energy.
- It will be fixed in v02-00-01, need to be checked.

Summary

- Reported couple of things I found
 - SatoruJetFinder/Fortran/cernlib ---> need discussion in future
 - IsolatedLeptonTagger ---> new z-direction treatment, will affect to everything
 - Some strange things in new samples

- Need to check/study more
 - strange MCParticle
 - effect of $\gamma\gamma$ \rightarrow hadrons and e^+e^- seeable pairs