Experimental techniques for Higgsinos with $\Delta(\textit{M}) \sim$

1 GeV DRAFT

Mikael Berggren¹,S. Sasikumar¹, J. List¹, & al. on behalf ILD

¹DESY, Hamburg

ALCW, Fukuoka, May, 2018

Outline

- Light Higgsinos
- Experimental issues
- Conclusions and out-look

Natural SUSY: Light, degenerate higgsinos

Natural SUSY:

$$\bullet \ \ \textit{m}_{\textit{Z}}^2 \ = \ 2 \frac{\textit{m}_{\textit{H}_{\textit{U}}}^2 \tan^2 \beta - \textit{m}_{\textit{H}_{\textit{d}}}^2}{1 - \tan^2 \beta} - 2 \, |\mu|^2$$

- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $\bullet \ \mathit{M}_{\tilde{\chi}_{1,2}^{0}}, \mathit{M}_{\tilde{\chi}_{1}^{\pm}} \approx \mu$
 - Degenerate ($\Delta M \leq 1 \text{ GeV}$)
- Ex. of UV model giving this: Hybrid gauge-gravity mediation.

```
F. Brümmer and W. Buchmluller, JHEP 1107 (2011)
010 [arXiv:1105.0802[hep-ph]] & JHEP 1205 ('12) 006
```


Natural SUSY: Light, degenerate higgsinos

Natural SUSY:

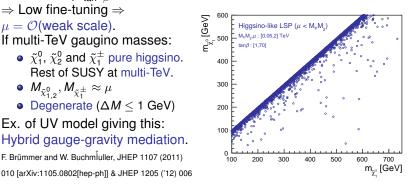
•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_{12}^0}$, $M_{\tilde{\chi}_{1}^{\pm}} \approx \mu$
 - Degenerate ($\Delta M \leq 1 \text{ GeV}$)
- Ex. of UV model giving this: Hybrid gauge-gravity mediation.

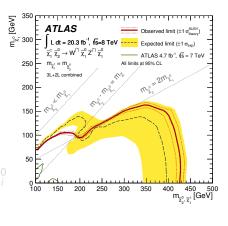
```
F. Brümmer and W. Buchmïuller, JHEP 1107 (2011)
010 [arXiv:1105.0802[hep-ph]] & JHEP 1205 ('12) 006
```

[arXiv:1201.4338[hep-ph]]

Natural SUSY: Light, degenerate higgsinos


Natural SUSY:

$$\bullet \ \ m_Z^2 \ = \ 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 \, |\mu|^2$$

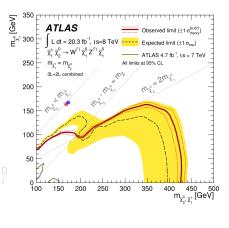

- ⇒ Low fine-tuning ⇒ $\mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.
 - $M_{\tilde{\chi}_1^0}$, $M_{\tilde{\chi}_1^{\pm}} \approx \mu$
 - Degenerate ($\Delta M < 1 \text{ GeV}$)
- Ex. of UV model giving this: Hybrid gauge-gravity mediation. F. Brümmer and W. Buchmluller, JHEP 1107 (2011)

[arXiv:1201.4338[hep-ph]]

But quite generic: Parameter-scan by T. Tanabe:

- Studied model points:
 - dm1600: $\Delta(M)$ =1.6 GeV, m_h =124 GeV, $M_{\tilde{\chi}_1^0}$ =164.2 GeV.
 - dm770: $\Delta(M)$ =0.77 GeV, m_h =127 GeV, $M_{\tilde{\chi}_1^0}$ =166.6 GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}$ due to weak isospin, no t-channel due to higgsino nature)

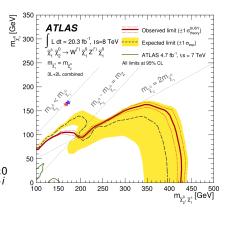
Detailed simulation study of such a model at DBD:


H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

Studied model points:

- dm1600: $\Delta(M)$ =1.6 GeV, m_h =124 GeV, $M_{\tilde{\chi}_1^0}$ =164.2 GeV.
- dm770: $\Delta(M)$ =0.77 GeV, m_h =127 GeV, $M_{\tilde{\chi}_1^0}$ =166.6 GeV.

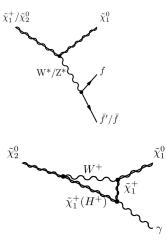
Very hard for LHC.


• Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}$ due to weak isospin, no t-channel due to higgsino nature)

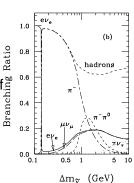
Detailed simulation study of such a model at DBD:

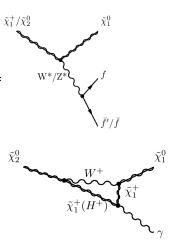
H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

- Studied model points:
 - dm1600: $\Delta(M)$ =1.6 GeV, m_h =124 GeV, $M_{\tilde{\chi}_1^0}$ =164.2 GeV.
 - dm770: $\Delta(M)$ =0.77 GeV, m_h =127 GeV, $M_{\tilde{\chi}_1^0}$ =166.6 GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

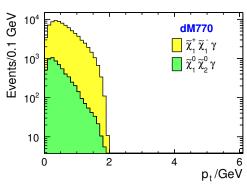


Detailed simulation study of such a model at DBD:


H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

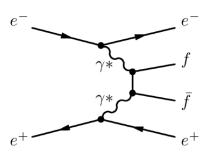

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Low p_⊥ particles only visible signal.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$ • Separate $\tilde{\chi}_2^{\pm}$ from $\tilde{\chi}_2^0$: Either
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Low p_⊥ particles only visible signal.

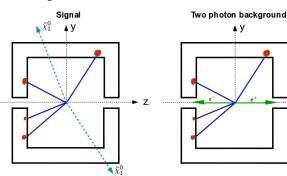


- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Low p_⊥ particles only visible signal.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Few particle F.S. Here: BR:s of $\tilde{\chi}_1^{\pm}$ vs. $\Delta(M)$
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Low p_⊥ particles only visible signal.


Low p⊥ particles only visible signal....

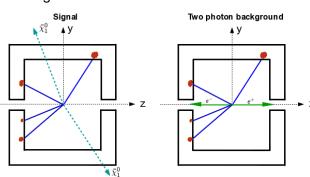
- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different!


Low p⊥ particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different!

Low p⊥ particles only visible signal....

- Multi-peripheral $\gamma\gamma$
- ... Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different!

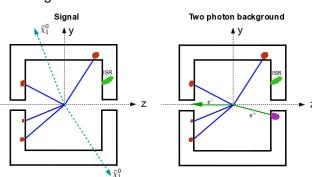


Low p⊥ particles only visible signal....

• Multi-peripheral $\gamma\gamma$

..

- Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different!

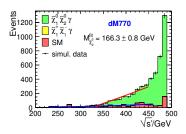


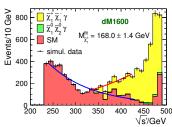
Low p⊥ particles only visible signal....

• Multi-peripheral $\gamma\gamma$

..

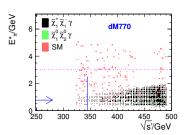
- Looks like the signal!
- To detect: Tag using ISR photon, then look at rest of event:
- $\gamma\gamma$ and signal, with an ISR photon in addition: Now different!

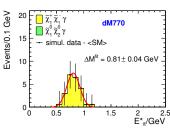

6/20


Light, degenerate higgsinos: Selections

- No seen beam-remnant: No activity in BeamCal.
- Low multiplicity: $N_{\text{Reconstructed P}} < 15$.
- Require ISR: Exactly one reconstructed γ with $E_{\rm ISR} > 10\,{\rm GeV}$ and a $|\cos\theta_{\rm ISR}| < 0.993$.
- Central production: Any other reconstructed particle > 20° away from the beam axis.
- Large fraction of E_{cms} in the LSPs: $E_{miss} > 300 \,\mathrm{GeV}$.
- Sizeable missing p_{\perp} : $|\cos \theta_{miss}| < 0.992$.
- For $\tilde{\chi}_1^+ \tilde{\chi}_1^-$: Semi-leptonic For $\tilde{\chi}_1^0 \tilde{\chi}_2^0$: Radiative decay. decay.

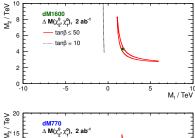
Light, degenerate higgsinos: Mass and $\Delta(M)$

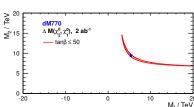

- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to \sim 100 MeV.



Light, degenerate higgsinos: Mass and $\Delta(M)$

- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_π gives $\Delta(M_{\widetilde{\chi}_1^0}, M_{\widetilde{\chi}_1^\pm})$ to \sim 100 MeV.

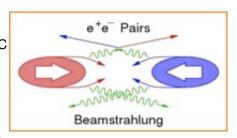



Light, degenerate higgsinos: Model parameters

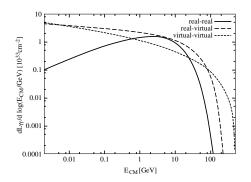
- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

Light, degenerate higgsinos: Model parameters

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

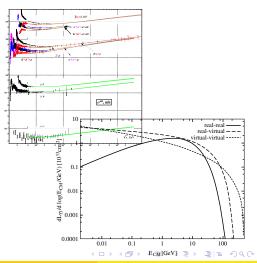

Experimental issues

- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is extremely small and dense.
 - ullet 5 nm imes 150 nm imes 200 μ m
 - \Rightarrow very high E- and B-fields.
 - \Rightarrow synchrotron radiation (X-rays) and e^+e^- pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim \text{high E } \gamma$:s
- Giving these $m_{\gamma\gamma}$ spectra:

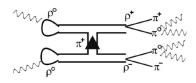

- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is extremely small and dense.
 - ullet 5 nm imes 150 nm imes 200 μ m
 - ⇒ very high E- and B-fields.
 - ⇒ synchrotron radiation (= X-rays) and e⁺e⁻ pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim$ high E γ :s
- Giving these $m_{\gamma\gamma}$ spectra:

- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is extremely small and dense.
 - ullet 5 nm imes 150 nm imes 200 μ m
 - ⇒ very high E- and B-fields.
 - ⇒ synchrotron radiation (= X-rays) and e⁺e⁻ pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim \text{high E } \gamma$:s
 - Giving these $m_{\gamma\gamma}$ spectra:

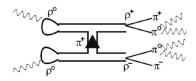
- The ILC beam-spot:
 - To achieve the very high ILC luminosity, the beam-beam crossover region (the "beam-spot") is extremely small and dense.
 - ullet 5 nm imes 150 nm imes 200 μ m
 - ullet \Rightarrow *very* high E- and B-fields.
 - \Rightarrow synchrotron radiation (= X-rays) and e^+e^- pairs.
 - Who says "photons meets electrons", says "Compton back-scattering"
 - $\Rightarrow \sim \text{high E } \gamma$:s
- Giving these $m_{\gamma\gamma}$ spectra:



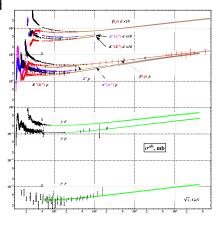
- Inclusive cross-section for $\gamma\gamma \to$ hadrons : "In $\frac{1}{400}$ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High $m_{\gamma\gamma}$: Multi-peripheral dominates.
- At low $m_{\gamma\gamma}$: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^0 \rho^0 \to \rho^+ \rho^-$ w/ a π exchange...
- ~ one such in each bunch-crossing!



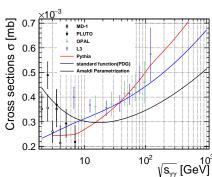
(PDG)


- Inclusive cross-section for $\gamma\gamma \to$ hadrons : "In $\frac{1}{400}$ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High $m_{\gamma\gamma}$: Multi-peripheral dominates.
- At low $m_{\gamma\gamma}$: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^0 \rho^0 \to \rho^+ \rho^-$ w/ a π exchange...
- ~ one such in each bunch-crossing!

- Inclusive cross-section for $\gamma\gamma \to {\rm hadrons}$: "In $\frac{1}{400}$ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High $m_{\gamma\gamma}$: Multi-peripheral dominates.
- At low $m_{\gamma\gamma}$: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^0 \rho^0 \to \rho^+ \rho^-$ w/ a π exchange...
- ~ one such in each bunch-crossing!

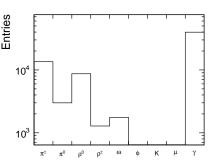


- Inclusive cross-section for $\gamma\gamma \to {\rm hadrons}$: "In $\frac{1}{400}$ of the cases, a γ is a vector-meson"
- Fold with ILC fluxes:
- High $m_{\gamma\gamma}$: Multi-peripheral dominates.
- At low $m_{\gamma\gamma}$: vector-meson scattering dominates.
- \Rightarrow few-meson states, eg $\rho^0 \rho^0 \to \rho^+ \rho^-$ w/ a π exchange...
- ~ one such in each bunch-crossing!


Experimental issues: ILC "pile-up"

- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p_⊥
 hadrons and pairs wasn't.
 Overlay was not well
 described at the time.
- Little phase-space ⇒
 exclusive modes ⇒ codes like
 PYTHIA inadequate.
- Theory shaky, need data
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).

Experimental issues: ILC "pile-up"


- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p_⊥
 hadrons and pairs wasn't.
 Overlay was not well
 described at the time.
- Little phase-space ⇒
 exclusive modes ⇒ codes like
 PYTHIA inadequate.
- Theory shaky, need data!
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).

Experimental issues: ILC "pile-up"

- Previous study: Multi-peripheral $\gamma\gamma$ considered (ISR trick, see above).
- However, overlay low-p_⊥
 hadrons and pairs wasn't.
 Overlay was not well
 described at the time.
- Little phase-space ⇒
 exclusive modes ⇒ codes like
 PYTHIA inadequate.
- Theory shaky, need data!
- Dedicated, data-driven, generator (Barklow, Peskin, Chen).

Final state particles when $M_{\gamma\gamma} < 2 { m GeV}$

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - ⇒ Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - ⇒ Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons
 - Different production point.

Experimental issues: Tackling $\gamma\gamma$

Three-pronged approach:

- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - ⇒ Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

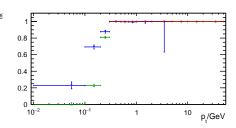
Experimental issues: Tackling $\gamma\gamma$

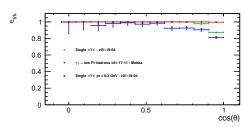
Three-pronged approach:

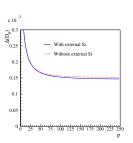
- Multi-peripheral:
 - Mimics signal, but only virtual γ :s is a problem: Real ones have no p_{\perp} , and can thus not mimic a missing p_{\perp} signal.
 - ⇒ Solved by ISR trick.
- Overlay:
 - Confuses signal: extra signal-like tracks in selected events, but will not alone pass signal criteria.
 - Often distinct signature, identifiable by direct reconstruction of vector mesons.
 - Different production point.

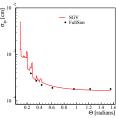
Experimental issues: Direct reconstruction of overlay?

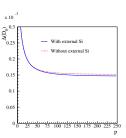
- At low $M_{\gamma\gamma} \pi\pi$ dominates, followed by $\rho^0 \rho^0$
- $ho^0
 ho^0
 ightarrow (\pi^+ \pi^-) + X$ in ~ 90 % of the cases.
- So: Can we find the pions?
- Answer: Pretty often!

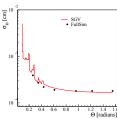

Experimental issues: Direct reconstruction of overlay?

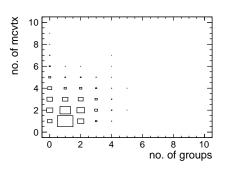

- At low $M_{\gamma\gamma} \pi\pi$ dominates, followed by $\rho^0 \rho^0$
- $ho^0
 ho^0
 ightarrow (\pi^+ \pi^-) + X$ in ~ 90 % of the cases.
- So: Can we find the pions?
- Answer: Pretty often!


Experimental issues: Direct reconstruction of overlay?


- At low $M_{\gamma\gamma}$ $\pi\pi$ dominates, followed by $\rho^0\rho^0$
- $\rho^0 \rho^0 \rightarrow (\pi^+ \pi^-) + X$ in ~ 90 % of the cases.
- So: Can we find the pions?
- Answer: Pretty often!

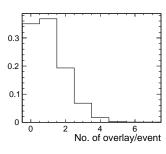


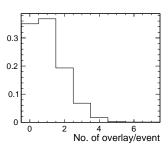

- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{\it ip}\sim$ 1 $\mu \it m$), this is a point
- ⇒ vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{X-y} (ie. from the beam-spot), and compatible ip_Z .
- Promising...



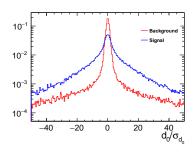
- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip}\sim$ 1 μ m), this is a point
- ⇒ vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z .
- Promising...

- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{ip}\sim$ 1 μ m), this is a point
- > vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z .
- Promising...

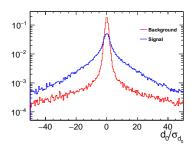

- Remember: beam-spot in x-y plane is at nano-metre scale.
- Even with the excellent vertex-detectors of ILD and SiD ($\sigma_{\it ip}\sim$ 1 $\mu \it m$), this is a point
- ⇒ vertex-finding is a 1D-problem (unlike LEP or LHC).
- Create groups of tracks w/ low ip_{x-y} (ie. from the beam-spot), and compatible ip_z .
- Promising...


- But: which is the signal?
 - 1 In $\sim \frac{1}{3}$ of the events, there is no overlay!
 - 2 Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices
- Work in progress...

- But: which is the signal?
 - 1 In $\sim \frac{1}{3}$ of the events, there is no overlay !
 - 2 Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In **DM770**, the signal particles comes from detectably displaced vertices.
- Work in progress...



- But: which is the signal?
 - In $\sim \frac{1}{3}$ of the events, there is no overlay !
 - 2 Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices
- Work in progress...



- But: which is the signal?

 - 2 Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices.
 - Work in progress...

- But: which is the signal?
 - 1 In $\sim \frac{1}{3}$ of the events, there is no overlay !
 - 2 Particle ID: To separate channels, a semi-leptonic signature is requested for the $\tilde{\chi}_1^{\pm}$ channel. The background never has that.
 - In DM770, the signal particles comes from detectably displaced vertices.
- Work in progress...

Conclusions

At ILC:

- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- This is being re-visited, including important experimental features not modelled at DBD-times, or not used:
 - γγ → low p_⊥ hadron overlay, both modelling and mitigation strategies.
 - Interaction-point variation in z.
 - Displaced vertices in signal.

Conclusions

At ILC:

- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- This is being re-visited, including important experimental features not modelled at DBD-times, or not used:
 - $\gamma\gamma \to \text{low p}_\perp$ hadron overlay, both modelling and mitigation strategies.
 - Interaction-point variation in z.
 - Displaced vertices in signal.

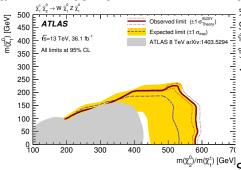
Out-look

- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate χ₁^{*}χ₂^{*} from χ₁^{*}χ₁^{*}, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \to \pi^0 \pi^0$.

Out-look

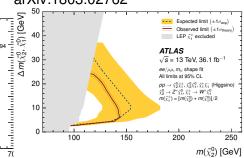
- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ from $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \to \pi^0 \pi^0$.

Out-look

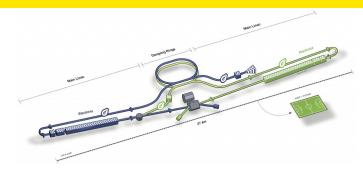

- Finalise overlay vertex-finding.
- Further detailed studies of possible full reconstruction of overlay events.
- Use the clearly detectable displaced vertex in DM770:
 - Use to separate $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ from $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, instead of semi-leptonic requirement.
 - Use $M_{\ell\ell}$ in $\tilde{\chi}_2^0$ decays.
- Attack the $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ with radiative decays in the presence of $\gamma \gamma \to \pi^0 \pi^0$.

Thank You!

BACKUP SLIDES


Latest Atlas (13 TeV, 36 fb⁻¹)

arXiv:1712.08119


 \sim same analysis as shown in talk. Only extends below the $M_{\tilde{\chi}^0_2}$ (or $M_{\tilde{\chi}^\pm_2})>2M_{\tilde{\chi}^0_2}$ line

arXiv:1803.02762

 $^{\text{m}(\chi_2^0)^{\text{m}}(\chi_1^+)}$ Same channel as in this talk. Look in talk. at $\Delta(M)\sim 1~{
m GeV}$ and $M_{\tilde{\chi}_2^0}\sim 160~{
m GeV}$. The actual limit is the LEP one.

The ILC

- A linear e⁺e⁻ collider.
- Total length 31 km
- E_{CMS} tunable between 200 and 500 GeV, upgradable to 1 TeV.
- Polarisation e[−]: 80% (e⁺: ≥ 30%)
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$
- 2 experiments, sharing one interaction region.
- Concurrent running with the LHC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - → Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

⇒ for detectors:

Low background ⇒ detectors can be

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - ⇒ Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

⇒ for detectors:

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of hermeticity for the searches: $\gamma\gamma$ rejection !