Searching for new light scalars at the ILC

Yan Wang (DESY, IHEP), Jenny List (DESY), Mikael Berggren (DESY), Shin-ichi Kawada (DESY)

ALCW 2018 — Fukuoka

May 28, 2018

Motivation

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- ▶ 2HDM, NMSSM, Randall Sundrum model
- a scalar lighter than 125 GeV is well motivated.

- LEP/LHC constrains rely on the model details: CP, mass hierarchy, couplings, etc.
- want a better result?

ILC — The International Linear Collider

- ILC properties:
 - $ightharpoonup e^+e^-$ collider, with polarized beams (e^- : \pm 0.8, e^+ : \mp 0.3).
- ▶ ILC running scenario for 22 years:
 - $ightharpoonup \sqrt{s} =$ 250 GeV and $\int L dt = 2/ab$ for the first stage
- Energy-upgradable
 - $ightharpoonup \sqrt{s} = 350 \text{ GeV} \text{ and } \int Ldt = 0.2/ab$
 - \blacktriangleright $\sqrt{s}=500$ GeV and $\int Ldt=4/ab$
 - if possible 1 TeV.

Comparing LEP/LHC and ILC

comparing with LEP: ILC is sensitive to lighter scalars with smaller hZZ coupling.

	LEP	ILC	improvement	
$\max \sqrt{s} \; (GeV)$	189-209	250		
m_h region (GeV)	<115	<125		
luminosity	totally 2461 pb^{-1}	2000 fb^{-1}	recoil mass	
polorization	×	\checkmark	angle correlation	
detector	ALEPH,DELPHI,OPAL,L3	ILD, SID	resolution	
searching channel	2b2q, $2b2 u$,2b2l, $ au aq q$	model independent		

Phys.: Conf. Ser. 110 042030

- comparing with LHC
 - \blacktriangleright LHC, complex initial states and backgrounds, $h\to\gamma\gamma/ZZ...$ channel, large uncertanties.
 - ► ILC, e⁺e⁻ initial states, clean environment, model-independent.

The Recoil Method on SM Higgs at ILC

 e^+e^- collider \to know the initial states behaviour \to recoil technique \to model independence

Higgsstrahlung process $e^+e^- \rightarrow Z + H/h$

- $M_{rec}^2 = (\sqrt{s} E_{\mu\mu})^2 |\vec{p}_{\mu\mu}|^2$
- $ightharpoonup M_{\mu\mu} \sim M_Z$, $M_{rec} \sim M_{H/h}$

SM Higgs recoil mass distribution (ILD)

SM Higgs coupling for ILC and HL-LHC

the same method on light scalar searching, SM $H \rightarrow a$ lighter h.

The Recoil Method at LEP

LEP results (CERN-EP-2002-032):

- ▶ the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - ▶ 91.2 GeV and 115.4 pb⁻¹ at LEP1
 - ► 161 to 202 GeV and 662.4 pb⁻¹ at LEP2.
- light higgs mass: 10 keV 100 GeV

$$k = \frac{\sigma_{S^0 Z}}{\sigma_{H_{\text{SM}} Z}(m_{H_{SM}} = m_{S^0})}$$

ILD (International Large Detector)

and full simulation of Signal and SM Background

- ► new trackers, calorimeters, 3.5T magnetic field, yoke for muon, forward system
- Requirements:
 - Impact parameter resolution: $\sigma_{r\phi} < 5 \oplus 10/(p \ sin^{3/2}\theta)\mu m$
 - Momentum resolution: $\sigma_{1/n_T} < 2*10^{-5} \text{ GeV}^{-1}$
 - Energy resolution: $\sigma_E/E = 3-4\%$

The signal MC samples

- $M_{S^0} = 10, 15, 20, ..., 120 \,\text{GeV},$ every $5 \,\text{GeV}$ step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

The background MC samples:

- ▶ 2-fermion $(2f^l, 2f^h)$ leptonic/bhabha/hadronic
- ► 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ▶ SM Higgs, $Higgs_{125}$

analysis flow

$$\chi^2(M_{\mu^+\mu^-},M_{\rm rec}) = \frac{(M_{\mu^+\mu^-}-M_Z)^2}{\sigma_{M_{\mu^+\mu^-}}^2} + \frac{(M_{\rm rec}-M_h)^2}{\sigma_{M_{\rm rec}}^2}.$$

02 $M_Z \in [73, 120] \text{ GeV}$

03
$$P_T^Z \in [10, 128 - 4 \times \frac{M_h}{10}] \text{ GeV}$$

 $|\cos heta_{
m mis}| < 0.98$ when $M_h > 50$ GeV

Multi-Variate Analysis: angles

recoil mass distribution

- ightharpoonup recoil mass distribution for different M_{S^0} .
- (-,+) / (+,-) 900 fb⁻¹, (-,-) / (+,+) 100 fb⁻¹ polarization @ 250 GeV

mass region	main backgrounds			
$125 > M_{S^0} > M_Z$	$4f_{zz}^{sl}, 4f_{zz/ww}$, SM Higgs			
$M_{S^0} \sim M_Z$	$4f_{zz}^l, 4f_{zz}^{sl}, 4f_{zz/ww}$, SM Higgs			
$M_Z > M_{S^0} > 40$	$2f_l, 4f_{zz}, 4f_{zz/ww}$			
$40>M_{S^0}$	$2f_l$			

Comparing with MC results

- ▶ 95% CL upper bounds on scale factor of cross section with likelihood methods
- ▶ MC results with the same cuts.
- slightly different in the low mass region.

ISR photon veto

- ▶ There is photon return effects in 2f process.
- identify ISR photon by
 - ▶ ISR photon in the central region ($\cos\!\theta < 0.95$): $E_{\rm central} > 100\,{\rm GeV}$
 - ▶ ISR photon in the forward region (0.95 < cos θ < 0.99): $E_{\text{forward}} > 60 \,\text{GeV}$
 - ▶ ISR cone around photon axis: $\cos \alpha = 0.90$
 - \blacktriangleright Energy ratio inside the ISR photon cone: $\frac{E}{E_{\rm cone}}=0.95$

Comparing w/o photon veto results

- ightharpoonup remove large amount of $2f_l$ background in small mass region.
- $S^{95} \in (0.0025 0.015) \rightarrow \kappa_{hZZ}^{95} \in (0.05 0.12).$

comparing LEP2 and my strategy for searching light scalars

OPAL's strategy

- at least two opposite charged leptons
- isolation of lepton tracks, $\alpha_{iso}^1 > 15^\circ$, $\alpha_{iso}^2 > 10^\circ$
- find two best leptons $m_{ll} \sim m_Z$
- invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2] \, \mathrm{GeV}$
- $ightharpoonup p_{II}^Z < 50 \,\mathrm{GeV}$
- ▶ polar angle of missing momentum, $|\theta_{mis}|$ <0.95 for p_{mis} > 5 GeV
- acoplanarity
- ► ISR photon veto

my strategy

- at least two isolated muon, with IsolatedLeptonTagging Processor
- ▶ find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_b$
- Recovery of bremsstrahlung and FSR photons
- $\hbox{\bf Reconstruct Z boson mass} \\ M_{\mu\mu} \in [73,120] \ \hbox{GeV}.$
- $\blacktriangleright \ 70\,\mathrm{GeV} > P_T^Z > 10\,\mathrm{GeV}$
- \blacktriangleright the polar angle of the missing momentum, $|\theta_{mis}|<0.98$
- MVA: $M_{\mu^+\mu^-}$, $cos(\theta_Z)$, $cos(\theta_{\mu^+\mu^-})$, $cos(\theta_{\mu^+})$, $cos(\theta_{\mu^-})$,acoplanarity
- ▶ ISR photon veto

Comparing with LEP results

- ▶ LEP recoil: LEP2 data from 161 GeV to 202 GeV, combined LEP1 data.
- ▶ LEP traditional: exclusive reconstruction of Z and h decay, mainly $h \to bb$, $h \to \tau\tau$.
- \blacktriangleright when $100 \geq M_h \geq 50$ GeV, trend are similar with LEP.
- generally, 1 order better than LEP recoil results

Conclusion

- A lighter higgs is favored in many BSM models
 - ▶ 2HDM, NMSSM, RS ...
- A model-independent analysis has been performed.
 - mass range [10, 120) GeV
 - ▶ 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
 - (-+,+-,--,++)=(45%,45%,5%,5%) polarization scenario
- Exclusion limits for κ_{hZZ}^{95} coupling factor
 - $\kappa_{hZZ}^{95} \in (0.05\text{-}0.12).$
 - ▶ 1 order better than LEP recoil results.

backup

Theoretical Motivation

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- ► General Two Higgs Doublet Model (2HDM...)
 - with 2 scalars: h, H, 1 pheudoscalar A, 2 charged particles
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 - with 3 scalars: h1, h2, h3, 2 pheudoscalars A1, A2, 2 charged particles
- Randall Sundrum model
 - a radion

In these models, a scalar lighter than $125 \; \text{GeV}$ is well motivated.

LHC Higgs boson rather SM-like \rightarrow new higgs coupling to Z boson strongly suppressed. Could we find it at the ILC?

Past Experiment Results parameters

LEP SM Higgs searches: constrain other extra scalars, whose properties, especially decay profile, are similar as SM higgs's.

LEP/LHC constrain rely on the model details: CP, mass hierarchy, couplings, etc. JHEP 12 (2016) 068

2HDM, Type I: $tan\beta > 1.2, \\ m_A > 60 \text{ GeV}, \\ m_{H^\pm} > 80 \text{ GeV} \ ..$

cut effi

Four regions.

mass region	main backgrounds				
$125 > M_{S^0} > M_Z$	$4f_{zz}^{sl}, 4f_{zz/ww}, {\sf SM \; Higgs}$				
$M_{S^0} \sim M_Z$	$4f_{zz}^{l}, 4f_{zz}^{sl}, 4f_{zz/ww}$, SM Higgs				
$M_Z > M_{S^0} > 40$	$2f_l$, $4f_{zz}$, $4f_{zz/ww}$				
$40 > M_{S^0}$	$2f_l$				

signal & bkgs

Cut efficiencies for different masses:

$\int Ldt = 2000fb^{-1}$	new higgs	$4f_l$	$4f_{sl}$	$2f_l$	total bk	cut efficiency	significance
$m_h = 115 \text{ GeV}$	17419.6	61033.9	53869.4	13877.7	128781	0.67	45.56
$m_h = 90 \text{ GeV}$	22198.2	63210.7	74563	18514.2	156288	0.59	52.54
$m_h = 70 \text{ GeV}$	26841.3	51671.6	60357.7	37166.6	149196	0.57	63.97
$m_h = 50 \text{ GeV}$	30493.5	46128.1	54372.8	80074.4	180575	0.54	66.37
$m_h = 30 \text{ GeV}$	33843.7	51206.6	55743.3	213184	320134	0.49	56.88

$$\text{significance} = \frac{S}{\sqrt{S+B}}, \quad \text{and } S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L}, \quad \text{ where } \kappa_{gZZ} = 1$$

and
$$S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L}$$
,

Yan Wang \mid Searching for new light scalars at the ILC \mid May 28, 2018 \mid 19/20

likelihood method

- \blacktriangleright 2 σ exclusion limits with a bin-by-bin comparison between the signal and backgrounds recoil mass histograms.
- ▶ the background-only hypothesis no new higgs in the investigated mass range.
- lacktriangle the signal-plus-background hypothesis the new higgs is assumed to be produced.
- ▶ a global test-statistic $X(m_h) = \mathcal{L}(s(m_h))/\mathcal{L}(0)$ is constructed to discriminate signal and background.
- ▶ the distributions of $X(m_h)$ are normalised to become probability density functions \rightarrow integrated to be the confidence levels $CL_b(m_h)$ and $CL_{s+b}(m_h)$.
- ▶ the ratio $CL_s(m_h) = CL_{s+b}(m_h)/CL_b(m_h)$ is used to described that the signal confidence one might have obtained in the absence of background.

