very preliminary version, a lot of rearranging still to be done probably no other significant plots will be added

Beam backgrounds at ILC

Daniel Jeans, KEK

ALCW18, May 2018, Fukuoka beamstrahlung

e+ e- pairs produced in strong fields when bunches collide

gamma-gamma \rightarrow hadrons high xsec physics process

background particles from upstream / downstream muons from Beam Delivery System neutrons from beam dump beamstrahlung large number of e+ e- pairs, with low pT, produced at IP

vast majority constrained within beampipe by experiment's B-Field → avoid hitting any material, detectors

distribution of pairs depends on focusing of machine number depends on luminosity

anti-DID field helps steer most of these particles into outgoing beampipe, however many still hit beamcal, potentially reflected back into detector

Distribution of incoherent pairs around beampipe

simple extrapolation in uniform 3.5T field, no beam crossing, no material interactions, no backscatter from e.g. FCAL

energy distribution in beamcal: energy (density) per pad, per bunch crossing, integrated over layers

ILD_I5_v02, for illustration

beamcal energy deposit (r<4cm) as function of anti-DID field strength

total beamcal energy deposit [r<4cm] for different scaling of anti-DID field

scaling of anti-DID field

description of material in forward region important to correctly simulate pair backgrounds, back-scatters good description of B-fields also needed

recently implemented in ILD models : reappraisal of backgrounds underway

X0 y= 0.001 [cm]

muon energy distribution @ 500 GeV

simulated hits in YokeEndcapsCollection

2625 bunches of ILC500

simulated hits in TPCCollection

largely parallel to TPC drift: hit only a few readout pads

2625 bunches of ILC500

total number of simulated hits per collection

	fiveSpoilers	fiveSpoilers + Wall
VXD	0	0
SIT	423	40
SET	5k	427
FTD	2k	172
TPC	83k	7k
ECalBarrel	80k	12k
ECalEndcap	210k	18k
EcalEndcapRing	82k	600
HcalBarrel	184k	40k
HcalEndcaps	565k	69k
HcalEndcapRing	31k	5k
YokeEndcaps	384k	95k
YokeBarrel	41k	41k
LumiCalCollection	2k	78
LHCalCollection	7k	609
BeamCalCollection	1k	30

don't forget in DAQ rate estimations ! may dominate for forward calorimeters / muon detectors ?

calorimeters: high granularity allow easy identification of beam muons low energy (MIP-like) hit energies many hits are "out of time" by several ns not a big problem from reconstruction point of view may have impact on DAQ system design

silicon trackers: limited influence

- most sensors are parallel to the muons
- others (FTD) have small area
- TPC: almost all particles parallel to drift field: each muon hits only a few readout pads

SiD pair background study

Comparison between the new ILC250 parameter sets:

- Highest occupancy in the innermost VXD barrel layer
- Acceptable background level in SiD VXD: #dead cells < 10⁻⁴ of all cells
- Set (A) of CR-0016 just on the acceptable limit

<u>Hit time study</u> revealed that pairs backscatter at BeamCal

→ backscatter pairs hit VXD 20ns after bunch crossing

→ Time gate: reject all hits later than 10ns!

VXD barrel

Acceptable

10

15

Fraction of dead cells

10-

10⁻²

10-3

10-4

10⁻⁵

10⁻⁶

10-7

10⁻⁸

10-9

Time gate reduces the occupancy by up to 36%.

Even for ILC500 LumiUp, occupancy close to acceptable limit \rightarrow increasing the buffer depth by only 2 would guarantee similar VXD performance throughout the first ILC stages!