Determination of anomalous VVH couplings at the ILC

1). An overview of the anomalous VVH study $\mathbf{Z Z H} / \gamma \mathbf{Z H}$ and WWH induced with dim- 6 operators
2). An application of a Matrix Element method toward further improvement of the sensitivity

Tomohisa Ogawa
Junping Tian
Keisuke Fujii
1). An overview of the anomalous VVH study $\mathbf{Z Z H} / \gamma \mathbf{Z H}$ and $\mathbf{W W H}$ induced with dim- $\mathbf{6}$ operators
2). Anemplication of a Mat toward further improvem

Effective Field Theory

General definition $\quad \mathcal{L}_{e f f}=\mathcal{L}_{S M}^{(4)}+\sum_{i} \frac{c_{i}^{(5)}}{\Lambda^{1}} \mathcal{O}_{i}^{(5)}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\cdots$.
W. Buchmuller, D. Wyler,

Nucl. Phys. B268 (1986) 621-653.
possible to describe dynamics below Λ,
can reflect symmetries of an underlying theory.
by introducing general operators based on the gauge symmetry.

The number of relevant dim- 6 operators @ ILC $=17$ operators
Warsaw bases

Grządkowski et al.
arXiv:arXiv: 1008.4884,

General structures
before symmetry breaking

$$
\begin{aligned}
& \text { makes all SM Higgs couplings shift } \\
& \Delta \mathcal{L}=\frac{c_{H}}{2 v^{2}} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right)+\frac{c_{T}}{2 v^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi\right)\left(\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi\right)-\frac{c_{6} \lambda}{v^{2}}\left(\Phi^{\dagger} \Phi\right)^{3} \\
& +\frac{g^{2} c_{W W}}{m_{W}^{2}} \Phi^{\dagger} \Phi W_{\mu \nu}^{a} W^{a \mu \nu}+\frac{4 g g^{\prime} c_{W B}}{m_{W}^{2}} \Phi^{\dagger} t^{a} \Phi W_{\mu \nu}^{a} B^{\mu}+\frac{g^{\prime 2} c_{B B}}{m_{W}^{2}} \Phi^{\dagger} \Phi B_{\mu \nu} B^{\mu \nu} \\
& +\frac{g^{2} \tilde{c}_{W W}}{m_{W}^{2}} \Phi^{\dagger} \Phi W_{\mu \nu}^{a} \widetilde{W}{ }^{a \mu \nu}+\frac{4 g g^{\prime} \tilde{c}_{W B}}{m_{W}^{2}} \Phi^{\dagger} t^{a} \Phi W_{\mu \nu}^{a} \widetilde{B}^{\mu \nu}+\frac{g^{\prime 2} \tilde{c}_{B B}}{m_{W}^{2}} \Phi^{\dagger} \Phi B_{\mu \nu} \widetilde{B}^{\mu \nu}
\end{aligned}
$$

Combination w/ V, Φ

Effective Field Theory

General definition $\quad \mathcal{L}_{e f f}=\mathcal{L}_{S M}^{(4)}+\sum_{i} \frac{c_{i}^{(5)}}{\Lambda^{1}} \mathcal{O}_{i}^{(5)}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\cdots$
W. Buchmuller, D. Wyler,

Nucl. Phys. B268 (1986) 621-653.
possible to describe dynamics below Λ,
$\operatorname{dim}-5\left(\mathrm{~L}^{\dagger} \Phi \Phi^{\dagger} \mathrm{L}\right)$ gives majonara neutrino mass can reflect symmetries of an underlying theory. by introducing general operators based on the gauge symmetry.

The number of relevant dim-6 operators @ ILC $=17$ Warsaw bases Grzadkowski et al.
arXiv:arXiv: 1008.4884,
General structures
After symmetry breaking
Focusing on VVH structures
$\Delta \mathcal{L}_{h}=-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h+\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2}$
T. Barklow et al., Phys. Rev. D 97 (2018) 053003.
\rightarrow Complete formula is given

$$
\begin{aligned}
& +\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\eta_{2 W} \\
& +\left(\zeta_{W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu}
\end{aligned}
$$

$$
+\frac{1}{2}\left(\zeta_{z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 z} \frac{h^{2}}{v_{2}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu}
$$

$$
+\frac{1}{2}\left(\zeta_{A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}
$$

$$
+\frac{1}{2}\left(\tilde{\zeta}_{z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\tilde{L}}_{2 z} \frac{h^{2}}{v_{n}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\tilde{\zeta}_{W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{\nu^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
$$

$$
+\frac{1}{2}\left(\tilde{\zeta}_{A} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{\tilde{A}}^{\mu \nu}+\left(\tilde{\zeta}_{A Z} \frac{h}{v_{0}}+\tilde{\zeta}_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}
$$

Effective Fielc

General definition

The number o

Higgs production@ ILC

I. Buchmuller, D. Wyler, ucl. Phys. B268 (1986) 621-653.
dim-5 ($\left.L^{\dagger} \Phi \Phi^{\dagger} \mathrm{L}\right)$ gives majonara neutrino mass

Grządkowski et al.
arXiv:arXiv: 1008.4884,

General structures
After symmetry breaking

Focusing on VVH structures

anomalous ZZH : $\mathbf{3}$ parameters fit

Notation on ZZH $\Rightarrow \mathrm{az}$, bz, btz parameters assuming beam Pol. left/right

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \tilde{\hat{Z}}^{\mu \nu} H
$$

$$
(\Lambda=1 \mathrm{TeV})
$$

All SM bkgs are considered
Detector response is considered.
The sensitivity can not be given with norm. only.
The shape information is critical for the determination.

anomalous $\mathrm{ZZH} / \gamma \mathrm{ZH}: 3$ parameters fit

- A and Z are mixing through $\operatorname{SU} 2 x U 1$ gauge symmetry
\boldsymbol{B} couples to e_{L} and e_{R} in the same way. W^{3} couples to \mathbf{e}_{L} only.
Δ Beam polarization can disentangle them

- The Lagrangian is replaced

$$
\begin{array}{rlrl}
\mathcal{L}_{Z Z H}= & M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H & & \mathcal{L}_{V V H}= \\
& M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H \\
& +\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H & \zeta_{Z Z}=\frac{v}{\Lambda} b_{Z}, & +\frac{1}{2 v}\left(\zeta_{Z Z} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\zeta_{A Z} \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}\right) H \\
& \tilde{\zeta}_{Z Z}=\frac{v}{\Lambda} \tilde{b}_{Z} & +\frac{1}{2 v}\left(\tilde{\zeta}_{Z Z} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu}+\tilde{\zeta}_{A Z} \hat{A}_{\mu \nu} \tilde{\hat{Z}}^{\mu \nu}\right) H
\end{array}
$$

Five parameters fit

$$
Z H+Z Z \text { at } 250+500 \mathrm{GeV} \text { with } H 20
$$

I σ bounds
including 500GeV operation
ZZH / $\gamma Z H$ structures
can be measured $\sim 2 \%$
or much better $\quad\left\{\begin{array}{l}a_{Z}= \pm 0.0223 \\ \zeta_{Z Z}= \pm 0.0067 \\ \zeta_{A Z}= \pm 0.0024 \\ \tilde{\zeta}_{Z Z}= \pm 0.0109 \\ \tilde{\zeta}_{A Z}= \pm 0.0006\end{array}, \rho=\left(\begin{array}{ccccc}1 & -.837 & -.134 & -.009 & -.010 \\ - & 1 & .040 & .008 & .013 \\ - & - & 1 & .006 & -.0012 \\ - & - & - & 1 & .600 \\ - & - & - & - & 1\end{array}\right)\right.$

anomalous WWH : $\mathbf{3}$ parameters fit

Notation on ZZH \Rightarrow aw, bw, btw parameters
$\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{~V}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H$ $(\Lambda=1 \mathrm{TeV})$

Ex. WW-fusion $250 \mathrm{GeV}, h \rightarrow b b:$ sig \& bkgs distributions

WW-fusion

ZH w/ anomalous
Same final state \rightarrow contaminate $W W H$
due to variation shape \& norm.

Annual ILC physics and detector meeting
https://agenda.linearcollider.org/event/7837/contributions/40946/ attachments/32854/49991/annualMeeting18.pdf

anomalous WWH : $\mathbf{3}$ parameters fit

LOWS 17
https://agenda.linearcollider.org/event/7645/contributions/40062/ attachments/32273/49230/LCWS17_Ogawa_v171025.pdf
Notation on ZZH \Rightarrow aw, ww, btw parameters
Annual ILC physics and detector meeting
$\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{~V}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H$ https://agenda.linearcollider.org/event/7837/contributions/40946/ attachments/32854/49991/annualMeeting18.pdf ($\Lambda=1 \mathrm{TeV}$)

Ex. WW-fusion $250 \mathrm{GeV}, h \rightarrow b b:$ sig \& begs distributions

Six parameters fit

$$
\sqrt{s}=250+500 \mathrm{GeV} \text { with } \mathrm{L}_{\mathrm{int}}=
$$

w/ ZZH contributions
$\mathrm{w} /$ the shape $\nu \bar{\nu} h+\mathrm{w} /$ the shape $Z h, h \rightarrow W W^{*}$

$$
\left\{\begin{array}{l}
a_{W}=\left[\begin{array}{ll}
-0.024, & 0.019
\end{array}\right] \\
b_{W}=\left[\begin{array}{ll}
-0.070, & 0.036
\end{array}\right] \\
\tilde{b}_{W}=\left[\begin{array}{ll}
-0.175, & 0.179
\end{array}\right] \\
a_{Z}=\left[\begin{array}{ll}
-0.031, & 0.031
\end{array}\right] \\
b_{Z}=\left[\begin{array}{ll}
-0.0090, & 0.0090
\end{array}\right] \quad \rho=\left(\begin{array}{cccccc}
1 & .3907 & -.0534 & -.0445 & -.0064 & .0003 \\
- & 1 & -.0856 & -.0128 & .0059 & 5.7 \mathrm{E}-5 \\
- & - & 1 & .0045 & -.0032 & 3.6 \mathrm{E}-5 \\
\tilde{b}_{Z}=\left[\begin{array}{ll}
-0.0093, & 0.0093
\end{array}\right]
\end{array} \quad\left(\begin{array}{c}
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right)\right.
\end{array}\right.
$$

The sensitivities to anomalous VVH

- ILC full operation (including 500 GeV studies)
common notation difference

$$
\begin{aligned}
& \Delta \mathcal{L}_{h}=-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h+\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+ \\
& \sim \sim \mathbf{0 . 5 \%}(\mathbf{a z} \sim \mathbf{2 \%}) \\
&+\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\sim \mathbf{0 . 5 \%}(\mathbf{a w} \sim \mathbf{2 \%})
\end{aligned}
$$

$$
\zeta_{Z Z}=\frac{v}{\Lambda} b_{Z},
$$

must convert them with factor of 4.07

$$
<\mathbf{0 . 3} \mathbf{6}(\mathbf{b z} \sim \mathbf{1} \%)+\frac{1}{2}\left(\zeta_{z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 z} \frac{h^{2}}{v_{2}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} \sim \mathbf{1 \sim 2 \%}(\mathbf{b w}=\mathbf{3} \sim \mathbf{7 \%})
$$

$$
+\frac{1}{2}\left(\zeta_{A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu} .<\mathbf{0 . 3 \%}
$$

$$
<\mathbf{0 . 3 \%} \mathbf{(b t z \sim 1 \%)}+\frac{1}{2}\left(\tilde{\zeta}_{z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 z} \frac{h^{2}}{v_{n}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\tilde{\zeta}_{W} \frac{h}{v_{0}}+\frac{1}{n} \tilde{\zeta}_{2 W} \frac{h^{2}}{a^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu} \quad \sim \mathbf{5 \%}(\mathbf{b t w}=\mathbf{1 7 \%})
$$

$$
+\frac{1}{2}\left(\tilde{\zeta}_{A} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{\tilde{A}}^{\mu \nu}+\left(\tilde{\zeta}_{A Z} \frac{h}{v_{0}}+\tilde{\zeta}_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}<\mathbf{0 . 3 \%}
$$

The values given above are direct measurement without any assumption.

When performing the global fitting by using the other channels the results could be improved more.

The sensitivities to anomalous VVH

- ILC full operation (including 500 GeV studies)
common notation difference

$$
\zeta_{Z Z}=\frac{v}{\Lambda} b_{Z},
$$

must convert them with factor of 4.07

$$
<\mathbf{0 . 3 \%} \mathbf{(b z \sim 1 \%})+\frac{1}{2}\left(\zeta_{z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 z} \frac{h^{2}}{v_{n}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} \boldsymbol{\mathbf { 1 } \sim \mathbf { 2 } \%}(\mathbf{b w}=\mathbf{3 \sim 7 \%})
$$

$$
+\frac{1}{2}\left(\zeta_{A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu} .<\mathbf{0 . 3 \%}
$$

heavy flavor ID,
jet charge ID

$$
<\mathbf{0 . 3 \%} \mathbf{0}(\mathbf{b t z} \sim \mathbf{1 \%})+\frac{1}{2}\left(\tilde{\zeta}_{z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 z} \frac{h^{2}}{v_{n}^{2}}\right) \hat{Z}_{\mu \nu} \hat{\tilde{Z}}^{\mu \nu}+\left(\tilde{\zeta}_{W} \frac{h}{v_{0}}+\frac{1}{\hbar} \tilde{\zeta}_{2 W} \frac{h^{2}}{\omega^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu} \quad \sim \mathbf{5 \%}(\mathbf{b t w}=\mathbf{1 7 \%})
$$

can improve more
for especially WWH

$$
+\frac{1}{2}\left(\tilde{\zeta}_{A} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\tilde{\zeta}_{A Z} \frac{h}{v_{0}}+\tilde{\zeta}_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}<\mathbf{0 . 3 \%}
$$

- LHC ATLAS : EFT analysis

JHEP 03 (2018) 095
DOI: 10.1007/JHEP03(2018)095
$\mathcal{L}_{0}^{V}=\left\{\kappa_{\mathrm{SM}}\left[\frac{1}{2} g_{H Z Z} Z_{\mu} Z^{\mu}+g_{H W W} W_{\mu}^{+} W^{-\mu}\right]\right.$

$$
\begin{aligned}
& -\frac{1}{4}\left[\kappa_{H g g} g_{H g g} G_{\mu \nu}^{a} G^{a, \mu \nu}+\tan \alpha \kappa_{A g g} g_{A g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}\right] \\
& -\frac{1}{4} \frac{1}{\Lambda}\left[\kappa_{H Z Z} Z_{\mu \nu} Z^{\mu \nu}+\tan \alpha \kappa_{A Z Z} Z_{\mu \nu} \tilde{Z}^{\mu \nu}\right] \\
& \left.-\frac{1}{2} \frac{1}{\Lambda}\left[\kappa_{H W W} W_{\mu \nu}^{+} W^{-\mu \nu}+\tan \alpha \kappa_{A W W} W_{\mu \nu}^{+} \tilde{W}^{-\mu \nu}\right]\right\} \chi_{0} .
\end{aligned}
$$

BSM coupling κ_{BSM}	Fit configuration	Expected conf. inter.	Observed conf. inter.	Best-fit $\hat{\kappa}_{\mathrm{BSM}}$	Best-fit $\hat{\kappa}_{\text {SM }}$	Deviation from SM
$\kappa_{H V V}$	$\left(\kappa_{H g g}=1, \kappa_{\text {SM }}=1\right)$	$[-2.9,3.2]$	$[0.8,4.5]$	2.9	-	2.3σ
$\kappa_{H V V}$	$\left(\kappa_{H g g}=1, \kappa_{\mathrm{SM}}\right.$ free $)$	$[-3.1,4.0]$	$[-0.6,4.2]$	2.2	1.2	1.7σ
$\kappa_{A V V}$	$\left(\kappa_{H g g}=1, \kappa_{\mathrm{SM}}=1\right)$	$[-3.5,3.5]$	$[-5.2,5.2]$	± 2.9	-	1.4σ
$\kappa_{A V V}$	$\left(\kappa_{H g g}=1, \kappa_{\mathrm{SM}}\right.$ free $)$	$[-4.0,4.0]$	$[-4.4,4.4]$	± 1.5	1.2	0.5σ

(given inverse power is Λ)
1). An overview of an an malous $\sqrt{ }$ YH study ZREH/ γ ZH-and
2). An application of a Matrix Element method toward further improvement of the sensitivity

$$
Z H \rightarrow \mu^{+} \mu^{-} H, \quad V_{s}=250 G e V
$$

Matrix Element Method

- An objective is clear

Try to encode all available kinematical information on an event into a single observable . LHC, Tevatron ... have used it !

Observation in an event in terms of differential σ

LO
$P\left(\vec{p}^{\mu}\right)=\frac{\left|\mathcal{M}\left(\vec{p}^{\mu}\right)\right|^{2}}{\sigma} d \Phi$

Matrix Element

- However, ISR, beam-strahlung, and FSR
NLO effects
Matrix Element doesn't fit
reaction anymore

- ILCSoft framework : Marlin-PHYSSIM

The development is on going by Junping, Keisuke

Matrix Element Calculation
based on PHYSSIM, Junping Tian
https://agenda.linearcollider.org/event/6301/contributions/29469/ attachments/24440/37804/MatrixElement_AWLC14.pdf

Application : constructing probability

- General expression

Event probability based on diff. cross-section

Integration over phase-space for four momenta

Assuming momenta are precisely measurable

Transfer is replaced with δ

$$
T\left(\vec{p}^{\mu} \rightarrow \vec{p}^{\mu}\right)=\delta\left(\vec{p}^{\mu}-\vec{p}^{\mu}\right)
$$

function is just extracted

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu \mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Denominator : integration is done including an acceptance function using PHYSSIM generator

Application : trial for the signal

- Chi-squared

$$
\chi^{2} \quad=-2 \log \Delta \mathcal{L}=-2 w\left(\log \mathcal{L}\left(\vec{a}_{V}\right)-\log \mathcal{L}_{S M}\right)
$$

$w:$ a factor for scaling the norm. to \#expected ~ 1623

- Likelihood function (unbinned estimation) (after bkg suppression in the shape analysis)

$$
\begin{aligned}
\mathcal{L}\left(\vec{a}_{V}\right) & =\mathcal{L}_{\text {shape }}\left(\vec{a}_{V}\right) \cdot \mathcal{L}_{\text {norm }}\left(\vec{a}_{V}\right) \\
& =\prod_{i=1}^{\text {MCevents }} P_{\text {shape }}\left(\vec{p}_{i}^{\mu} ; \vec{a}_{V}\right) \cdot P_{\text {norm }}\left(\vec{a}_{V}\right) \\
& =l^{\prime},
\end{aligned}
$$

- Event probability momenta: μ, μ, and it's recoil info.

$$
P_{\text {shape }}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)=\frac{A_{c c}^{\mu \mu H}\left(\vec{p}^{\mu}\right)\left|\mathcal{M}_{Z H \rightarrow \mu \mu H}\left(\vec{p}^{\mu} ; \vec{a}_{V}\right)\right|^{2}}{A_{c c}^{\mu H}\left(\vec{a}_{V}\right) \sigma_{Z H \rightarrow \mu \mu H}\left(\vec{a}_{V}\right)}
$$

Denominator :
integration is done including Acc is also calculated without ISR, BSL, FSR

- MarlinPhyssim : Calculator is LO

250 GeV

Sample :
1). no ISR, no BSL, and no FSR
2). with ISR, BSL and FSR

Application : trial for the signal

- b bs bt contours in the 2-parameter space
- A consistent situation: LO, hopefully it's perspective improvement

-$\mathrm{ZH} \rightarrow \mu^{+} \mu^{-} H$ (signal only) $250 \mathrm{GeV} 250 \mathrm{fb}^{-1}[\mathrm{~b}$ vs bt $]$	$\mathrm{ME}:$ is LO Sample $:$ no ISR, BSL, and FSR
Denomi.: is calculated based on LO	

Application : trial for the signal

- b bs bt contours in the 2-parameter space
- A consistent situation: LO, hopefully it's perspective improvement
- NLO effects, \rightarrow change shape, direct usage of momenta give large impact \rightarrow shift minimum, falsehood sensitivity
- Need to handle NLO effects correctly if wants to exceed 1% sensitivity

Summary

1). An overview of the anomalous VVH study $\mathrm{ZZH} / \gamma \mathrm{ZH}$ and WWH induced with dim- 6 operators

- Model independently the sensitivities to the structures were evaluated. (including 500 GeV operation)
- SM-like ZZH/WWH structures $\sim 2 \%$
- new $\mathrm{ZZH} / \gamma \mathrm{ZH}$ structures $<1 \%$
- new WWH structures 3~7 \% and $\sim 17 \%$
2). An application of a Matrix Element method toward further improvement of the sensitivity
- Try to encode all information into a single observable

Intrinsically the improvement could be given, however, it turns out that NLO effects (ISR, BSL)
affect to results largely when discussing the sensitivity $\sim 1 \%$
Need to handle carefully, we will start to develop it to include ISR \& BSL

Back up

Observables (anom-ZZ)

Focusing on ZZH
SM-like coupling

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
$$

Structures vary kinematics

- a different CP-even structure

would give peculiar kinematical distributions

$$
\begin{aligned}
\hat{F}_{\mu \nu} \hat{F}^{\mu \nu} & \propto \boldsymbol{B}_{1} \cdot \boldsymbol{B}_{2}-\boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2} \\
\hat{F}_{\mu \nu} \widetilde{\hat{F}}^{\mu \nu} & \propto \boldsymbol{E}_{1} \cdot \boldsymbol{B}_{2} \quad \text { take a parallel state }
\end{aligned}
$$

makes both planes tend to take a perpendicular state

In the Laboratory frame

$$
e^{+} e^{-} \rightarrow Z H \rightarrow l^{+} l^{-} H
$$

$\cos \theta \mathrm{z}$: a production of the Z . $\cos \theta f^{*}$: a helicity angle of a Z's daughter. $\Delta \Phi:$ an angle b / w two production plane.

Observables (anom-ZZ)

$Z H \rightarrow l^{+} l^{-} \mathrm{H}, V_{s}=250 \mathrm{GeV}$

Observables (anom-ZZ)

$Z H \rightarrow q q H, V_{s}=250 \mathrm{GeV}$
$\mathrm{I}_{3}-\mathrm{Q} \sin ^{2} \theta_{\mathrm{w}}$

$$
[0,2 \pi]
$$

$\boldsymbol{e}^{+} \boldsymbol{e}^{\boldsymbol{e}} \rightarrow \mathbf{Z H} \rightarrow \boldsymbol{l l H}$
$Z H \rightarrow l^{+} l^{-} H, \sqrt{H} s=250 \mathrm{GeV}$

w/o jet charge ID
[$0, \pi$]
$V_{s}=500 \mathrm{GeV}$

Observables (anom-ZZ)

Focusing on ZZH
SM-like coupling

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H
$$

ZZfusion $\rightarrow e e H, \quad V_{s}=500 \mathrm{GeV}$

Observables (anom-WW)

Focusing on WWH
SM-like coupling

- a different CP-even structure

$$
\mathcal{L}_{W W H}=2 M_{W}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{W}}{\Lambda}\right) W_{\mu}^{+} W^{-\mu} H+\frac{b_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} H+\frac{\tilde{b}_{W}}{\Lambda} \hat{W}_{\mu \nu}^{+} \widetilde{\hat{W}}^{-\mu \nu} H \text { a CP-violating structure }
$$

The Higgs-straulung

Observable
Momenta of W
helicity angle of a W's daughter angle b / w decay palnes

Observables (anom-WW)

$\mathbf{Z H} \rightarrow \boldsymbol{H} \rightarrow \boldsymbol{W} \boldsymbol{W}^{*}$ decay

Observables (anom-WW)

$\mathrm{ZH} \rightarrow \mathrm{H} \rightarrow \boldsymbol{W} W^{*}$ decay w/o Jet charge \& w/o flavor ID

Observables (anom-WW)

$250,500 \mathrm{GeV}$ WW-fusion Production is possible

Higgs related observables

momentum \& production

500 GeV

$\times 10^{-3}$

Observables (Production Cross-section)

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{\mathrm{v}}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{Z}^{\mu \nu} H
$$

No energy dependence on a

 Recover the SM with - Λ / vb bt vary depending on momentum

bt change symmetric

$\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}$ gives

one term with positive sign.

Analysis Strategy Detector Responce function

Constructing an event acceptance η and a migration matrix \bar{f}
(theoretical distributions $=>$ realistic distributions observed in reality)
1-dim observable $\Delta \Phi$ production

Two probabilities

$$
\left\{\begin{aligned}
\eta_{i} & \equiv \frac{N_{i}^{\text {Accept }}}{N_{i}^{\text {Gene }}} \quad \text { (Event acceptance) } \\
\overline{f_{j i}} & \equiv \frac{N_{j i}^{\text {Accept }}}{N_{i}^{\text {Accept }}} \quad \text { (Migration matrix) }
\end{aligned}\right.
$$

Evaluation of the sensitivity

Binned info. derived form shape

> "Generator level" distribution

$$
\text { Normalized to } \mathrm{Nsm} \quad \text { calculated } \mathrm{d} \sigma / \mathrm{dX} \text { with explicit parameters. }
$$

$$
\chi_{\text {shape }}^{2}=\sum_{j=1}^{n}\left[\frac{\stackrel{\Delta}{N_{S M}} \sum_{i=1}^{n}\left(\frac{1}{\sigma} \frac{d \sigma}{d x}\left(x_{i}\right) \cdot f_{j i}-\frac{1}{\sigma} \frac{d \sigma}{d x}\left(x_{i} ; a_{V}, b_{V}, \tilde{b}_{V}\right) \cdot f_{j i}\right)}{\Delta n_{S M}^{o b s}\left(x_{j}\right)}\right]^{2}
$$

Poisson error on each bin (SM Bkgs are taken into account)

Detector response function
\rightarrow Transfer the theory to
"Detector level" distribution

Normalization (Cross-section)

$$
\chi_{\text {norm }}^{2}=\left[\frac{N_{S M}-N_{B S M}\left(a_{V}, b_{V}, \tilde{b}_{V}\right)}{\delta \sigma_{Z h / e e h} \cdot N_{S M}}\right]^{2}
$$

Relative errors of

cross-section measurement

(SM Bkgs are taken into account)
full simulation, T. Barklow et al., "ILC Operating Scenarios", arXiv:1506.07830 [hep-ex]

$$
\begin{gathered}
\delta \sigma(\mathrm{Zh})=2.0 \% \text { and } 3.0 \% \\
\text { for } 250 \text { and } 500 \mathrm{GeV} \\
\delta \sigma_{e e h} \text { are } 27.16 \% \text { and } 5.32 \% \\
\text { for } 250 \text { and } 500 \mathrm{GeV}
\end{gathered}
$$

WW-fusion 250 GeV

$$
\begin{aligned}
& \mathrm{t} \text {-channel variation s-channel variation } \\
& \text { due to WWH } \\
& \text { due to } \mathrm{ZZH} \\
& \chi_{\text {tot }}^{2}=\left(\frac{N_{S M}^{t-\nu \nu h}-N_{B S M}^{t-\nu \nu h}\left(\vec{a}_{W}\right)+N_{S M}^{s-\nu \nu h}-N_{B S M}^{s-\nu \nu h}\left(\vec{a}_{Z}\right)}{\left.\delta \sigma_{\nu \nu h} \cdot N_{S M}^{t-\nu \nu h}\right)^{2}}\right. \text { Normalization } \\
& \begin{array}{l}
+\sum_{j}^{n}\left(\frac{S_{S M}^{t-\nu \nu h}\left(x_{j}\right)-S_{B S M}^{t-\nu \nu h}\left(x_{j} ; \vec{a}_{W}\right)+S_{S M}^{s-\nu \nu h}\left(x_{j}\right)-S_{B S M}^{s-\nu \nu h}\left(x_{j} ; \vec{a}_{Z}\right)}{\Delta n_{S M}^{o b s}\left(x_{j}\right)}\right)^{2} \text { Shape } \\
+\vec{a}_{Z}^{\mathrm{T}} \boldsymbol{C}_{Z Z H}^{-1} \vec{a}_{Z}
\end{array} \\
& \text { Evaluated Responce function } \\
& \text { Constraints and correlation for ZZH } \\
& \text { Czzh: }^{\text {variance-covariance }}
\end{aligned}
$$

anomalous $Z Z H$ varies the shape

ZZH a-b

Normalization from ZH and ZZ

Both az \& bz can adjust each other

 by making σ increase \& decreaseBoth az \& bz make σ increase, and any btz can not adjust since any btz can
 increase σ. Thus, the bound is quickly restricted

For this direction both az \& bz make σ decrease, and btz has huge room to recover the SM value by increasing $\sigma_{0.5}$

Once the shape is included in the analysis ... the bound is strongly constrained.

WWH a-b

Normalization from WW-fusion

az make σ increase, but, this time, bz can not change it largely any btz can not adjust since any btz can increase σ. Thus, the bound is quickly restricted

For this direction
both az make σ decrease. Both bz \& btz has huge room to recover the SM value by increasing σ

WWH a-b $250 \& 500 \mathbf{~ G e V}$

