Searching for new light scalars at the ILC

Yan Wang (DESY, IHEP), Jenny List (DESY), Mikael Berggren (DESY)

ILD meeting

May 23, 2018

Motivation

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- 2HDM, NMSSM, Randall Sundrum model
- a scalar lighter than 125 GeV is well motivated.

- LEP/LHC constrains rely on the model details: CP, mass hierarchy, couplings, etc.
- want a better result?

2/13

The Recoil Method on SM Higgs at ILC

 e^+e^- collider \rightarrow know the initial states behaviour \rightarrow recoil technique \rightarrow model independence

Higgsstrahlung process $e^+e^- \rightarrow Z + H/h$

• $M_{rec}^2 = (\sqrt{s} - E_{\mu\mu})^2 - |\vec{p}_{\mu\mu}|^2$ • $M_{\mu\mu} \sim M_Z$, $M_{rec} \sim M_{H/h}$

SM Higgs recoil mass distribution (ILD)

SM Higgs coupling for ILC and HL-LHC

Yan Wang | Searching for new light scalars at the ILC | May 23, 2018 | 3/13

LEP results (CERN-EP-2002-032):

- the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - 91.2 GeV and 115.4 pb⁻¹ at LEP1
 - 161 to 202 GeV and 662.4 pb⁻¹ at LEP2.
- light higgs mass: 10 keV 100 GeV

$$\blacktriangleright \ k = \frac{\sigma_{S^0Z}}{\sigma_{H_{\mathsf{SM}}Z}(m_{H_{SM}}=m_{S^0})}$$

The signal MC samples

- ▶ $M_{S^0} = 10, 15, 20, ..., 120 \text{ GeV}$, every 5 GeV step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

The background MC samples:

- 2-fermion (2f^l,2f^h) leptonic/bhabha/hadronic
- ► 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ▶ SM Higgs, *Higgs*₁₂₅
- γγ backgrounds

recoil mass distribution

Yan Wang | Searching for new light scalars at the ILC | May 23, 2018 | 7/13

Comparing with MC results

- ▶ 95% CL upper bounds on scale factor of cross section with likelihood methods
- MC results with the same cuts.
- slightly different in the low mass region.

ISR photon veto

- There is photon return effects in 2f process.
- identify ISR photon by
 - ▶ ISR photon in the central region ($\cos\theta < 0.95$): $E_{central} > 100 \text{ GeV}$
 - ▶ ISR photon in the forward region $(0.95 < \cos\theta < 0.99)$: $E_{\text{forward}} > 60 \text{ GeV}$
 - ISR cone around photon axis: $\cos \alpha = 0.90$
 - Energy ratio inside the ISR photon cone: $\frac{E}{E_{\text{cone}}} = 0.95$

Comparing w/o photon veto results

- > remove large amount of $2f_l$ background in small mass region.
- ► $S^{95} \in (0.0025 0.015) \rightarrow \kappa_{hZZ}^{95} \in (0.05\text{-}0.12).$

OPAL's strategy

- at least two opposite charged leptons
- ► isolation of lepton tracks, $\alpha_{iso}^1 > 15^\circ$, $\alpha_{iso}^2 > 10^\circ$
- \blacktriangleright find two best leptons $m_{ll} \sim m_Z$
- ► invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2] \text{ GeV}$
- $\blacktriangleright \ p_{ll}^Z < 50 \ {\rm GeV}$
- \blacktriangleright polar angle of missing momentum, $|\theta_{mis}|{<}0.95 \text{ for } p_{mis} > 5 \, \mathrm{GeV}$
- acoplanarity
- ISR photon veto

my strategy

- at least two isolated muon, with IsolatedLeptonTagging Processor
- Find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_h$
- Recovery of bremsstrahlung and FSR photons
- ► Reconstruct Z boson mass $M_{\mu\mu} \in [73, 120] \text{ GeV}.$
- $\blacktriangleright ~70~{\rm GeV} > P_T^Z > 10~{\rm GeV}$
- ▶ the polar angle of the missing momentum, $|\theta_{mis}| < 0.98$
- ► MVA: $M_{\mu^+\mu^-}$, $cos(\theta_Z)$, $cos(\theta_{\mu^+\mu^-})$, $cos(\theta_{\mu^+})$, $cos(\theta_{\mu^-})$,acoplanarity
- ISR photon veto

Comparing with LEP results

- ▶ LEP recoil: LEP2 data from 161 GeV to 202 GeV, combined LEP1 data.
- ▶ LEP traditional: exclusive reconstruction of Z and h decay, mainly $h \rightarrow bb$, $h \rightarrow \tau \tau$.
- when $100 \ge M_h \ge 50$ GeV, trend are similar with LEP.
- generally, 1 order better than LEP recoil results

A lighter higgs is favored in many BSM models

2HDM, NMSSM, RS …

A model-independent analysis has been performed.

- mass range [10, 120) GeV
- ▶ 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
- (-+,+-,--,++) = (45%,45%,5%,5%) polarization scenario

- Exclusion limits for κ^{95}_{hZZ} coupling factor

- $\kappa_{hZZ}^{95} \in$ (0.05-0.12).
- 1 order better than LEP recoil results.

