Software & Code Management

August 6th, 2018

Tokyo Analysis Workshop

Christian Graf

Software Overview

- CALICE Soft:
 Collection of packages
- Relies on ILCSoft
- Some are outdated
- Structure of packages not always clear, code may be at different places - needs some clean up


```
calice_sim öffentlich
 calice_tutorial  öffentlich
  calice_userlib  öffentlich
 flchcalsoftware ÖFFENTLICH
labview_converter öffentlich
  RootTreeWriter
           ÖFFENTLICH
  TBTrackHelpers ÖFFENTLICH
```

Software Overview

- CALICE Soft:
 Collection of packages
- · Relies on ILCSoft
- Some are outdated
- Structure of packages not always clear, code may be at different places - needs some clean up

Where is software for pedestal extraction?

- calice_reco/recoSiPM/src/PedestalProcessor.cc
- calice_calib/calib/src/Ahc2PedestalCalibrator.cc
- calice_ROOTmacros/Ahc2_PedestalExtractor/
- flchcalsoftware/Extraction_Pedestal/

Overview - Software Workflow

· Data and simulation are processed by the same pipeline

Energy / Time Reconstruction

Hit Energy Distribution, 120GeV Muons

[calice_reco/recoSIPM/Ahc2CalibrateProcessor]

$$E_{\text{calibrated}} = \frac{f_{\text{saturation}} \left[(\text{ADC} - \text{Pedestal}) * \text{IC/Gain} \right]}{\text{IC/Gain} * \text{MIP}}$$

$$t[ns] = TDC * slope + Offset - T_{reference}$$
 Lorenz

How to work together?

- Working with several people on the same software imposes some challenges:
- How to share the code?
- How to effectively develop features / fix bugs?
 Problematic
- How to maintain several versions of the software Problematic
- How to ensure working code while developing?

 Problematic
- How to track issues (bugs / missing features)?
 Pen & Paper
- How to organize documentation?
 Documentation?
- · How to guarantee a working software? Hope for the best

How to work together?

- Working with several people on the same software imposes some challenges:
- How to share the code?
 Git
- How to effectively develop features / fix bugs?
 Branching
- How to maintain several versions of the software Branching
- How to ensure working code while developing?
 Pull requests
- How to track issues (bugs / missing features)?
- How to organize documentation?
 Confluence
- · How to guarantee a working software? Continuous integration

Centralized vs Distributed Version Control

- In a distributed version control system everybody has a full copy of the repositories history
- This allows for more complex workflows

- 1. He creates his personal fork (a copy of the repo on the server)
- 2. He creates a separate branch on his fork for the development
- 3. He merges his development to his master branch
- 4. He creates a pull request for the main repo
- 5. The pull request will be merged in the main repo

- 1. He creates his personal fork (a copy of the repo on the server)
- 2. He creates a separate branch on his fork for the development
- 3. He merges his development to his master branch
- 4. He creates a pull request for the main repo
- 5. The pull request will be merged in the main repo

- 1. He creates his personal fork (a copy of the repo on the server)
- 2. He creates a separate branch on his fork for the development
- 3. He merges his development to his master branch
- 4. He creates a pull request for the main repo
- 5. The pull request will be merged in the main repo

- 1. He creates his personal fork (a copy of the repo on the server)
- 2. He creates a separate branch on his fork for the development
- 3. He merges his development to his master branch
- 4. He creates a pull request for the main repo
- 5. The pull request will be merged in the main repo

Why the hassle?

- The main repo is always in a production version ready to analyze data
- · The main repo may have different branches e.g., for different test beam campaigns
- · While working on his nice feature, Lorenz gets a mail, that he urgently has to fix a bug
- He switches back to his master branch, creates a new branch, fixes the bug, merges to the master, creates a pull request for the main repo and continues to work on his feature

Why the hassle?

- The main repo is always in a production version ready to analyze data
- · The main repo may have different branches e.g., for different test beam campaigns
- · While working on his nice feature, Lorenz gets a mail, that he urgently has to fix a bug
- He switches back to his master branch, creates a new branch, fixes the bug, merges to the master, creates a pull request for the main repo and continues to work on his feature

Why the hassle?

- The main repo is always in a production version ready to analyze data
- · The main repo may have different branches e.g., for different test beam campaigns
- · While working on his nice feature, Lorenz gets a mail, that he urgently has to fix a bug
- He switches back to his master branch, creates a new branch, fixes the bug, merges to the master, creates a pull request for the main repo and continues to work on his feature

Learning Git

- Basic commands on confluence
- Many online tutorials

Stash

- · CALICE Soft on Atlassian Stash (Thanks to Eldwan!)
- Git repository hosted on DESY Servers
- Fork Pull Request workflow
- Easy branching
- Integration with other DESY Atlassian tools

Jira

- Issue tracker
- Allows to list bugs / missing features
- Keeps track on what is currently being worked on
- Responsible persons can be assigned

Documentation

We need documentation on several layers

- 1. Comments to explain non trivial parts of the code
- 2. Each processor should have basic documentation on what it does, what input parameter it needs and what the output is
- 3. Each calice package / subfolder should have a README that clearly states what the scope of this package is
- 4. High level documentation on e.g. how to install the software, how to perform a pedestal calibration ...
 —> Confluence

Alternatives

Github - data protection concerns

- CERN Gitlab
- CERN Computing account required
- Git Repository / Issue Tracker / CI in one place
- Straight forward to use

Summary

- Complex software as a base for every analysis
- Several new tools may help us to effectively work together
- Analysis workshop is the perfect environment to try out the tools and give feedback

Happy Coding!

