Status of the analysis root tree for the AHCAL testbeam data

Tokyo Analysis Workshop 2018 Saiva Huck

Overview

- Root tree with variables for reconstructed data
- Filled from CalorimeterHit objects (slcio) after reconstruction
- Used for data analysis

Overview

- Root file: runrunnumber_date_time.root
- Name: "bigtree"
- 43 variables in total
- Each branch (each variable): info for all events
 - ⇒ Each event contains several objects
 - ⇒ An object can be one value or an array of information for each hit or layer
- Information available for every single hit in every event
 - ⇒ Information in arrays is important, not histograms
 - ⇒ Binning of shown histograms not relevant
- Example run: 60836 (May 2018), 40 GeV pions, no PP

bif Time

Status of the analysis root tree for the AHCAL testbeam data - Saiva Huck

runNumber

- Each event: one value
- Same for all events in one run

eventNumber

- Each event: one value
- Rather confusing
 - ⇒ Needs to be clarified
 - ⇒ Messes up number of entries
 - ⇒ 38*Entries ≠ Entries of per-layer distributions

eventTime

- Each event: one value
- BIF timestamp in unix time

ahc_iEvt

- Each event: one value
- Summed up number of hits up until that event
 - ⇒ Is this what we want?

ahc_iEvt

eventTime

- Each event: one value
- BIF timestamp in unix time

ahc_iEvt

- Each event: one value
- Summed up number of hits up until that event
 - ⇒ Is this what we want?

ahc_cellSize

- Each event: array of size of ahc_nHits entry
- Side length of hit scintillator tile in cm
- Has now been adapted to current prototype

ahc_hitCellID

- Each event: array of size of ahc_nHits entry
- Encoded IJK information of the hit

ahc_hitl, ahc_hitJ

- Each event: array of size of ahc_nHits entry
- Number of hit scintillator tile in x (I) and y (J) direction
- Tiles numbered from 1 to 24 in each direction
- Gives the hit position perpendicular to the beam axis

ahc hitK

- Each event: array of size of ahc_nHits entry
- Number of hit scintillator tile in z direction
- Corresponds to the layer number
- Numbered from 1 to 38

ahc hitl

• ahc_hitEnergy $|E_{ ext{calibrated}}| = |E_{ ext{calibrated}}|$

 $E_{\rm calibrated} = \frac{f_{\rm saturation} \left[({\rm ADC-Pedestal}) * {\rm IC/Gain} \right]}{{\rm IC/Gain} * {\rm MIP}}$

- Each event: array of size of ahc_nHits entry
- Energy of single hit in MIP
- From ADC value, pedestal subtracted
- For future reference: ahc_hitEnergy = E

ahc_hitPos

- Each event: 3 arrays of size of ahc_nHits entry
- Hit position in x, y and z in mm (accuracy: one tile)
- W.r.t. the center of the detector (z: first layer)
- o For future reference:
 - \Rightarrow ahc hitPos[0] = x
 - \Rightarrow ahc_hitPos[1] = y
 - \Rightarrow ahc_hitPos[2] = z

ahc_hitPos

- Each event: 3 arrays of size of ahc nHits entry
- Hit position in x, y and z in mm
- W.r.t. the center of the detector (z: first layer)
- For future reference:
 - \Rightarrow ahc hitPos[0] = x
 - ⇒ ahc hitPos[1] = y
 - \Rightarrow ahc hitPos[2] = z
- for(int n = 0; n < bigtree->GetEntries(); n++)
 for(int i = 0; i < ahc_nHits; i++)

TH1F->Fill(ahc_hitPos[0]); etc.

- ahc_nHits
 - Each event: one value
 - Total number of hits above threshold per event

- ahc_energySum
 - Each event: one value
 - Summed up MIP energy of all hits in one event

$$ahc_energySum = \sum_{i=1}^{ahc_nHits} E_i$$

ahc_cogX, ahc_cogY

- Each event: one value
- Center of gravity of event perpendicular to the beam axis
- Only if ahc_energySum > 0, otherwise standard value

$$ahc_cogX = \frac{\sum_{i=1}^{ahc_nHits} x_i \cdot E_i}{\sum_{ahc_nHits}^{ahc_nHits} E_i} = \frac{\sum_{i=1}^{ahc_nHits} x_i \cdot E_i}{ahc_energySum}$$

ahc cogZ

- Each event: one value
- Center of gravity of event in beam direction
- Only if ahc energySum > 0, otherwise standard value

ahc hitRadius

- Each event: array of size of ahc nHits entry
- Radial distance from cog of event in x and y in mm

$$ahc_hitRadius = \sqrt{\left(ahc_cogX - x\right)^2 + \left(ahc_cogY - y\right)^2}$$

- Each event: array of size of ahc nHits entry
- Hit energy divided by tile surface

$$ahc_hitEnergyDensity = \frac{E}{ahc_cellSize^2}$$

- ullet ahc_hitTime $t[
 m ns] = TDC * slope + Offset T_{
 m reference}$
 - Each event: array of size of ahc_nHits entry
 - Time of hit in ns
 - From TDC value
 - Calibration constants to follow, not yet correct

- ahc_hitType
 - Each event: array of size of ahc nHits entry
 - Definition: Gainbit*100 + memoryCell
 - Information on high (1)/low (0) gain and memory cell

ahc nLayers

- Each event: one value
- Should be 38 for all events
- Has now been adapted to current prototype

ahc energyDensity

- Each event: one value
- Energy of all hits in event divided by tile surface
- Used to not weigh hit distances more in larger tiles

- ahc_energyPerLayer
 - Each event: array of size of ahc_nLayers entry
 - Energy sum of all hits in one layer per event

- ahc_energyPerLayer_err
 - Each event: array of size of ahc_nLayers entry
 - Information not yet saved in slcio files
 - ⇒ All entries: standard value

- ahc_energyPerLayer
 - Each event: array of size of ahc_nLayers entry
 - Energy sum of all hits in one layer per event
 - for(int n = 0; n < bigtree->GetEntries(); n++)
 for(int i = 0; i < ahc_nLayers; i++)
 TProfile->Fill(i+1, ahc_energyPerLayer[i]);

- ahc_nHitsPerLayer
 - Each event: array of size of ahc_nLayers entry
 - Number of hits in each layer per event

ahc_nHitsPerLayer

- Each event: array of size of ahc_nLayers entry
- Number of hits in each layer per event
- for(int n = 0; n < bigtree->GetEntries(); n++)
 for(int i = 0; i < ahc_nLayers; i++)
 TProfile->Fill(i+1, ahc_nHitsPerLayer[i]);

- ahc_cogXPerLayer, ahc_cogYPerLayer
 - Each event: array of size of ahc_nLayer entry
 - ⇒ Only layers with ahc_energyPerLayer > 0
 - Mean center of gravity (x,y) in each layer per event

$$ahc_cogXPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer} x_i \cdot E_i}{ahc_energyPerLayer}$$

- ahc_cogXPerLayer, ahc_cogYPerLayer
 - Each event: array of size of ahc_nLayer entry
 Only layers with ahc energyPerLayer > 0
 - Mean center of gravity (x,y) in each layer per event
 - for(int n = 0; n < bigtree->GetEntries(); n++)
 for(int i = 1; i < ahc_nLayers; i++)
 TProfile->Fill(i, ahc_cogXPerLayer[i]);

$$ahc_cogXPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer} x_i \cdot E_i}{ahc_energyPerLayer}$$

ahc_radiusPerLayer

- Each event: array of size of ahc_nLayers entry
- Mean radius of the hits in each layer in each event

$$ahc_radiusPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer}\sqrt{(ahc_cogXPerLayer-x_i)^2 + (ahc_cogYPerLayer-y_i)^2}}{ahc_nHitsPerLayer}$$

ahc_radiusEwPerLayer

- Each event: array of size of ahc_nLayers entry
- Energy weighted mean radius

- ahc_radiusPerLayer, ahc_radiusEwPerLayer
 - o for(int n = 0; n < bigtree->GetEntries(); n++)
 for(int i = 1; i < ahc_nLayers; i++)</pre>

TProfile->Fill(i, ahc_radiusPerLayer[i]); etc.

ahc_radius

- Each event: one value
- Mean radial distance of all hits in an event from the cog

$$ahc_radius = \frac{\sum_{i=1}^{ahc_nHits} ahc_hitRadius_i}{ahc_nHits}$$

ahc radiusEw

- Each event: one value
- Energy weighted radius

- ahc_nHits5Layer
 - Each event: one value
 - Number of hits in first 5 layers
 - ⇒ BUT: only counts hits outside a radius of 280 mm
 - ⇒ Measured from center of detector

- ahc_energySum5Layer
 - Each event: one value
 - Energy sum in first 5 layers
 - ⇒ BUT: only counts hits outside a radius of 280 mm
 - ⇒ Measured from center of detector

- ahc_cogX5layer, ahc_cogY5Layer
 - Each event: one value
 - Mean center of gravity in first 5 layers in x and y
 - Averaged over ALL hits in first 5 layers

- ahc_cogZ5Layer
 - Each event: one value
 - Mean center of gravity in first 5 layers in z
 - Averaged over ALL hits in first 5 layers

bif_nTrigger

- Each event: one value
- Number of triggers per event

bif_source

- Each event: array of size of bif_nTrigger value
- Up to 4 devices connected to BIF
- Info which input was used
- Can be >1 trigger in the same source for the same event

- bif_BXID
 - Each event: array of size of bif_nTrigger value
 - Bunch crossing ID of each trigger event

- bif_Time
 - Each event: array of size of bif_nTrigger value
 - Time of each trigger event

Ideas for additions?

- Information in physics units (radiation length, ...)
- Errors in slcio objects
- Module/Chip/Channel info in addition to IJK
- RMS/skewness for entire runs?
 - O Also layer-wise?
- Keep/adapt 5Layer variables?
- Adapt ahc iEvt?
- ..