Status of the analysis root tree for the AHCAL testbeam data # Tokyo Analysis Workshop 2018 Saiva Huck ## Overview - Root tree with variables for reconstructed data - Filled from CalorimeterHit objects (slcio) after reconstruction - Used for data analysis ## Overview - Root file: runrunnumber_date_time.root - Name: "bigtree" - 43 variables in total - Each branch (each variable): info for all events - ⇒ Each event contains several objects - ⇒ An object can be one value or an array of information for each hit or layer - Information available for every single hit in every event - ⇒ Information in arrays is important, not histograms - ⇒ Binning of shown histograms not relevant - Example run: 60836 (May 2018), 40 GeV pions, no PP bif Time Status of the analysis root tree for the AHCAL testbeam data - Saiva Huck #### runNumber - Each event: one value - Same for all events in one run #### eventNumber - Each event: one value - Rather confusing - ⇒ Needs to be clarified - ⇒ Messes up number of entries - ⇒ 38*Entries ≠ Entries of per-layer distributions #### eventTime - Each event: one value - BIF timestamp in unix time #### ahc_iEvt - Each event: one value - Summed up number of hits up until that event - ⇒ Is this what we want? ahc_iEvt #### eventTime - Each event: one value - BIF timestamp in unix time #### ahc_iEvt - Each event: one value - Summed up number of hits up until that event - ⇒ Is this what we want? #### ahc_cellSize - Each event: array of size of ahc_nHits entry - Side length of hit scintillator tile in cm - Has now been adapted to current prototype #### ahc_hitCellID - Each event: array of size of ahc_nHits entry - Encoded IJK information of the hit #### ahc_hitl, ahc_hitJ - Each event: array of size of ahc_nHits entry - Number of hit scintillator tile in x (I) and y (J) direction - Tiles numbered from 1 to 24 in each direction - Gives the hit position perpendicular to the beam axis #### ahc hitK - Each event: array of size of ahc_nHits entry - Number of hit scintillator tile in z direction - Corresponds to the layer number - Numbered from 1 to 38 ahc hitl # • ahc_hitEnergy $|E_{ ext{calibrated}}| = |E_{ ext{calibrated}}|$ $E_{\rm calibrated} = \frac{f_{\rm saturation} \left[({\rm ADC-Pedestal}) * {\rm IC/Gain} \right]}{{\rm IC/Gain} * {\rm MIP}}$ - Each event: array of size of ahc_nHits entry - Energy of single hit in MIP - From ADC value, pedestal subtracted - For future reference: ahc_hitEnergy = E #### ahc_hitPos - Each event: 3 arrays of size of ahc_nHits entry - Hit position in x, y and z in mm (accuracy: one tile) - W.r.t. the center of the detector (z: first layer) - o For future reference: - \Rightarrow ahc hitPos[0] = x - \Rightarrow ahc_hitPos[1] = y - \Rightarrow ahc_hitPos[2] = z #### ahc_hitPos - Each event: 3 arrays of size of ahc nHits entry - Hit position in x, y and z in mm - W.r.t. the center of the detector (z: first layer) - For future reference: - \Rightarrow ahc hitPos[0] = x - ⇒ ahc hitPos[1] = y - \Rightarrow ahc hitPos[2] = z - for(int n = 0; n < bigtree->GetEntries(); n++) for(int i = 0; i < ahc_nHits; i++) TH1F->Fill(ahc_hitPos[0]); etc. - ahc_nHits - Each event: one value - Total number of hits above threshold per event - ahc_energySum - Each event: one value - Summed up MIP energy of all hits in one event $$ahc_energySum = \sum_{i=1}^{ahc_nHits} E_i$$ #### ahc_cogX, ahc_cogY - Each event: one value - Center of gravity of event perpendicular to the beam axis - Only if ahc_energySum > 0, otherwise standard value $$ahc_cogX = \frac{\sum_{i=1}^{ahc_nHits} x_i \cdot E_i}{\sum_{ahc_nHits}^{ahc_nHits} E_i} = \frac{\sum_{i=1}^{ahc_nHits} x_i \cdot E_i}{ahc_energySum}$$ #### ahc cogZ - Each event: one value - Center of gravity of event in beam direction - Only if ahc energySum > 0, otherwise standard value #### ahc hitRadius - Each event: array of size of ahc nHits entry - Radial distance from cog of event in x and y in mm $$ahc_hitRadius = \sqrt{\left(ahc_cogX - x\right)^2 + \left(ahc_cogY - y\right)^2}$$ - Each event: array of size of ahc nHits entry - Hit energy divided by tile surface $$ahc_hitEnergyDensity = \frac{E}{ahc_cellSize^2}$$ - ullet ahc_hitTime $t[m ns] = TDC * slope + Offset T_{ m reference}$ - Each event: array of size of ahc_nHits entry - Time of hit in ns - From TDC value - Calibration constants to follow, not yet correct - ahc_hitType - Each event: array of size of ahc nHits entry - Definition: Gainbit*100 + memoryCell - Information on high (1)/low (0) gain and memory cell #### ahc nLayers - Each event: one value - Should be 38 for all events - Has now been adapted to current prototype #### ahc energyDensity - Each event: one value - Energy of all hits in event divided by tile surface - Used to not weigh hit distances more in larger tiles - ahc_energyPerLayer - Each event: array of size of ahc_nLayers entry - Energy sum of all hits in one layer per event - ahc_energyPerLayer_err - Each event: array of size of ahc_nLayers entry - Information not yet saved in slcio files - ⇒ All entries: standard value - ahc_energyPerLayer - Each event: array of size of ahc_nLayers entry - Energy sum of all hits in one layer per event - for(int n = 0; n < bigtree->GetEntries(); n++) for(int i = 0; i < ahc_nLayers; i++) TProfile->Fill(i+1, ahc_energyPerLayer[i]); - ahc_nHitsPerLayer - Each event: array of size of ahc_nLayers entry - Number of hits in each layer per event #### ahc_nHitsPerLayer - Each event: array of size of ahc_nLayers entry - Number of hits in each layer per event - for(int n = 0; n < bigtree->GetEntries(); n++) for(int i = 0; i < ahc_nLayers; i++) TProfile->Fill(i+1, ahc_nHitsPerLayer[i]); - ahc_cogXPerLayer, ahc_cogYPerLayer - Each event: array of size of ahc_nLayer entry - ⇒ Only layers with ahc_energyPerLayer > 0 - Mean center of gravity (x,y) in each layer per event $$ahc_cogXPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer} x_i \cdot E_i}{ahc_energyPerLayer}$$ - ahc_cogXPerLayer, ahc_cogYPerLayer - Each event: array of size of ahc_nLayer entry Only layers with ahc energyPerLayer > 0 - Mean center of gravity (x,y) in each layer per event - for(int n = 0; n < bigtree->GetEntries(); n++) for(int i = 1; i < ahc_nLayers; i++) TProfile->Fill(i, ahc_cogXPerLayer[i]); $$ahc_cogXPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer} x_i \cdot E_i}{ahc_energyPerLayer}$$ #### ahc_radiusPerLayer - Each event: array of size of ahc_nLayers entry - Mean radius of the hits in each layer in each event $$ahc_radiusPerLayer = \frac{\sum\limits_{i=1}^{ahc_nHitsPerLayer}\sqrt{(ahc_cogXPerLayer-x_i)^2 + (ahc_cogYPerLayer-y_i)^2}}{ahc_nHitsPerLayer}$$ #### ahc_radiusEwPerLayer - Each event: array of size of ahc_nLayers entry - Energy weighted mean radius - ahc_radiusPerLayer, ahc_radiusEwPerLayer - o for(int n = 0; n < bigtree->GetEntries(); n++) for(int i = 1; i < ahc_nLayers; i++)</pre> TProfile->Fill(i, ahc_radiusPerLayer[i]); etc. #### ahc_radius - Each event: one value - Mean radial distance of all hits in an event from the cog $$ahc_radius = \frac{\sum_{i=1}^{ahc_nHits} ahc_hitRadius_i}{ahc_nHits}$$ #### ahc radiusEw - Each event: one value - Energy weighted radius - ahc_nHits5Layer - Each event: one value - Number of hits in first 5 layers - ⇒ BUT: only counts hits outside a radius of 280 mm - ⇒ Measured from center of detector - ahc_energySum5Layer - Each event: one value - Energy sum in first 5 layers - ⇒ BUT: only counts hits outside a radius of 280 mm - ⇒ Measured from center of detector - ahc_cogX5layer, ahc_cogY5Layer - Each event: one value - Mean center of gravity in first 5 layers in x and y - Averaged over ALL hits in first 5 layers - ahc_cogZ5Layer - Each event: one value - Mean center of gravity in first 5 layers in z - Averaged over ALL hits in first 5 layers #### bif_nTrigger - Each event: one value - Number of triggers per event #### bif_source - Each event: array of size of bif_nTrigger value - Up to 4 devices connected to BIF - Info which input was used - Can be >1 trigger in the same source for the same event - bif_BXID - Each event: array of size of bif_nTrigger value - Bunch crossing ID of each trigger event - bif_Time - Each event: array of size of bif_nTrigger value - Time of each trigger event ## Ideas for additions? - Information in physics units (radiation length, ...) - Errors in slcio objects - Module/Chip/Channel info in addition to IJK - RMS/skewness for entire runs? - O Also layer-wise? - Keep/adapt 5Layer variables? - Adapt ahc iEvt? - ..