Pion Energy Reconstruction with Deep Neural Networks

Erik Buhmann¹, Gregor Kasieczka, Erika Garutti

Friedrich Naumann FÜR DIE FREIHEIT

Overview

- Introduction
 - Neural Networks Basics
 - Network Architectures
- Preliminary Studies
 - Regression with 3D Convolutional Layer
 - Regression with Locally Connected Layer
- Summary & Outlook

Overview

- Introduction
 - Neural Networks Basics
 - Network Architectures
- Preliminary Studies
 - Regression with 3D Convolutional Layer
 - Regression with Locally Connected Layer
- Summary & Outlook

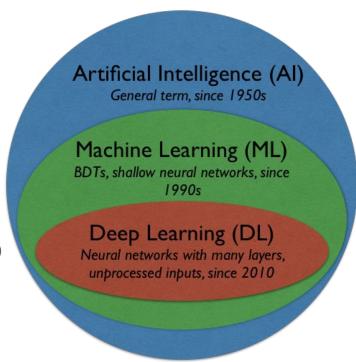
Terminology

What do we want to learn?

- Classification (Cat or dog?)
- Generation (New pictures of cats)
- Regression (How old is the cat?)
- Compression (Smaller cats)
- ?

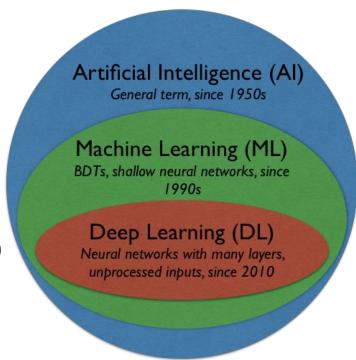
• What do we have available?

- Labelled examples (supervised learning)
- Limited labelled examples (weakly supervised training)
- No examples (unsupervised training)

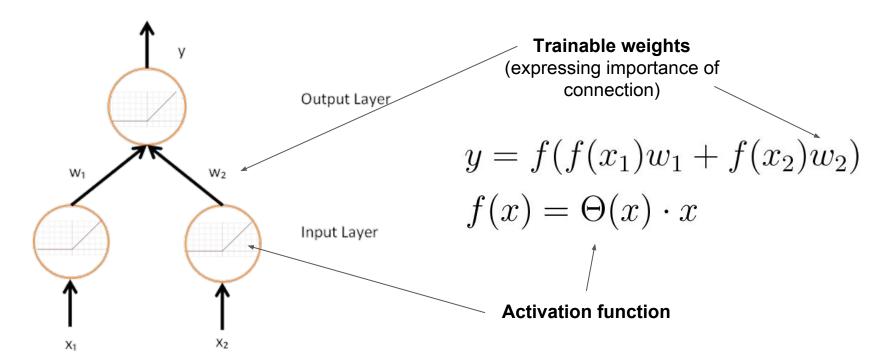


Terminology

- What do we want to learn?
 - Classification (Cat or dog?)
 - Generation (New pictures of cats)
 - Regression (How old is the cat?)
 - Compression (Smaller cats)
 - o ?
- What do we have available?
 - <u>Labelled examples (supervised learning)</u>
 - Limited labelled examples (weakly supervised training)
 - No examples (unsupervised training)



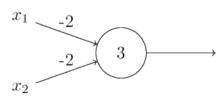
A Basic Neural Network



Simple NN as logic circuit

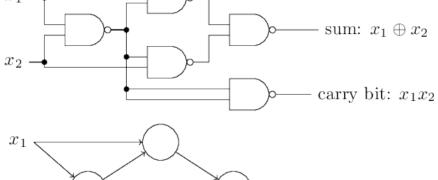
NAND logic function with "neuron":

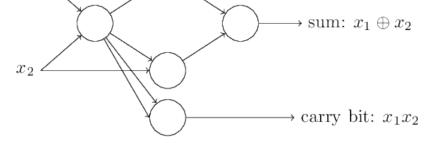
Weights
$$w_1$$
, $w_2 = -2$
Bias $b = 3$



Assuming binary input:

x 1	x2	(x ₁ w ₁ +x ₂ w ₂)+b	Out
0	0	3	1
0	1	1	1
1	0	1	1
1	1	-1	0

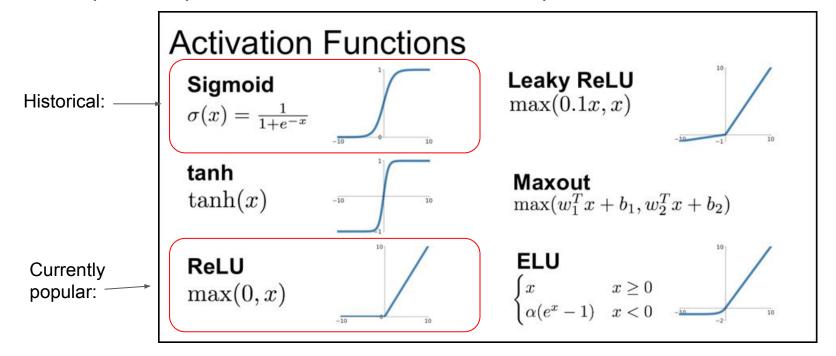




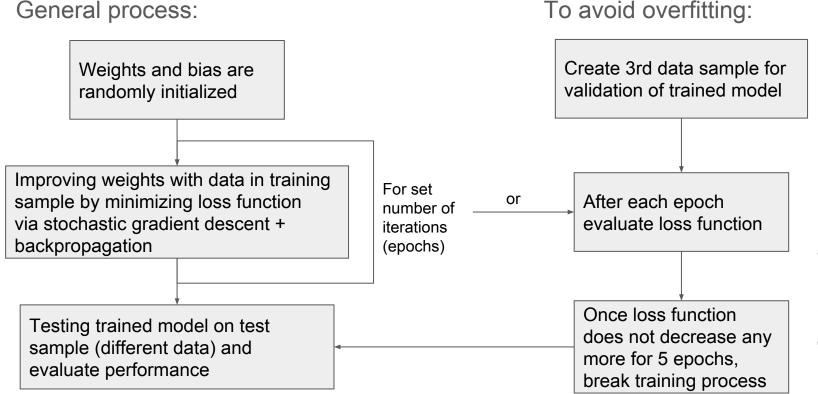
→ A large enough neural network with correctly tuned (trained!) weights can model any decision

Activation Functions

Computation performed in each neuron - Examples:



Learning Process



Loss function

Training by minimizing of loss function through adjusting weights and biases in every training step

Example 1) Mean Squared Error:

$$L(E_{i,true}, E_{i,pred}) = \frac{1}{N} \sum_{i} (E_{i,pred} - E_{i,true})^{2}$$

Example 2) Mean Squared Relative Error:

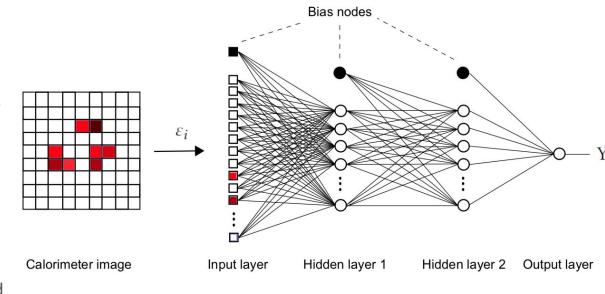
$$L(E_{i,true}, E_{i,pred}) = \frac{1}{N} \sum_{i} \left(\frac{E_{i,pred} - E_{i,true}}{E_{i,true}} \right)^{2}$$

Architecture

- Network based on connection of different layers and layer types
- Layer types we used so far:
 - Fully Connected layer
 - Locally Connected layer
 - Convolutional layer

Fully Connected Layer

- "Classical" Artificial
 Neural Network (ANN)
- Every node of each layer connected to every node of neighboring layers
- Many trainable weights
 - During training connections are strengthened or weakened



[1] Almeida et al, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, arXiv:1501.05968

Tokyo - August, 2018

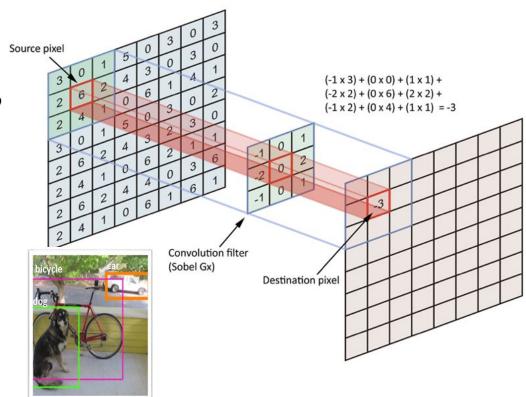
Locally Connected Layer

 Output value of convolutional kernel:

$$O_{conv} = (w_1 E_1 + w_2 E_2 + w_3 E_3 + \dots) + b$$

Unshared weights

- New kernel (here 3 x 3) is used at every position
- Multiple kernels used to learn different features of the image
- Could a (1 x 1) kernel be used to learn single calorimeter channel calibration?



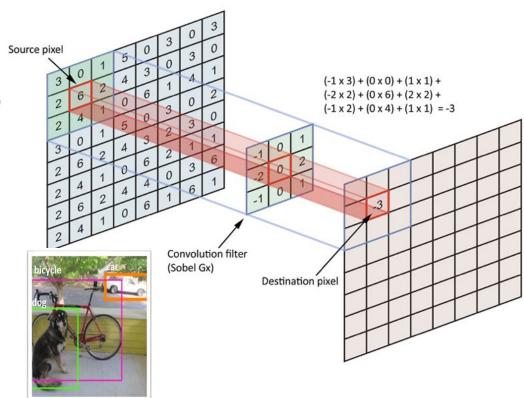
Convolutional Layer

 Output value of convolutional kernel:

$$O_{conv} = (w_1 E_1 + w_2 E_2 + w_3 E_3 + \dots) + b$$

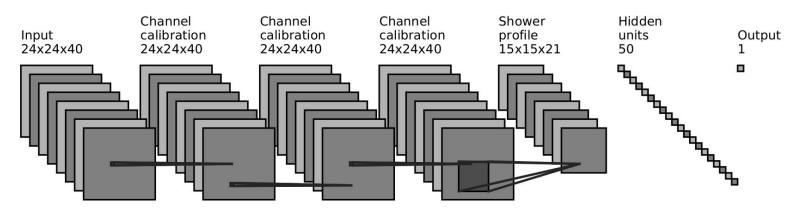
Shared weights

- Same kernel (here 3 x 3) is used at every position
 - Less trainable weights
- Multiple kernels used to learn different features of the image
- Could a convolutional kernel be used to learn particle shower features in calorimeter?



Goal: Deep Neural Network

- Connecting multiple locally connected, convolutional and fully connected layer
- Physics based approach:
 - Locally Connected layer to find channel calibration
 - Convolutional filter to identify shower profile



Overview

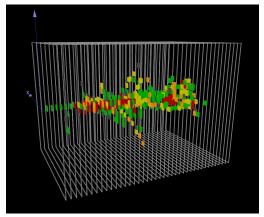
- Introduction
 - Neural Networks Basics
 - Network Architectures
- Preliminary Studies
 - Regression with 3D Convolutional Layer
 - Regression with Locally Connected Layer
- Summary & Outlook

Technicalities

- Network programmed in Python
 - Keras as high-level neural network API
 - Theano or tensorflow as back-end
- Training on Maxwell Cluster at DESY
 - Nodes with NVIDIA Tesla P100 GPU, 16GB RAM

Input data for network:

- Pion data from May testbeam @ SPS
- "Event display images" as (24,24,40) arrays
 - With hit energies at (I,J,K) coordinates
- E_{sum} > 200 MIP to cut Muon contamination

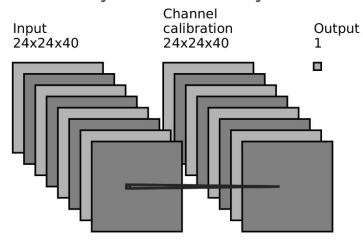


Regression task

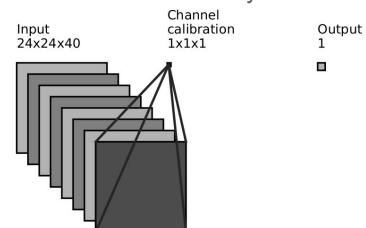
Plon energy [GeV]	Events in training sample	Events in validation sample	Events in test sample
10	12,000	4,000	4,000
15	0	0	4,000
20	12,000	4,000	4,000
30	0	0	4,000
40	12,000	4,000	4,000
50	0	0	4,000
60	12,000	4,000	4,000
80	0	0	4,000
100	12,000	4,000	4,000
120	0	0	4,000
160	12,000	4,000	4,000

Network Architectures

With locally connected layer:



With 3D convolutional layer:



Local Connection 1x1x1 kernel

Flatten

Convolution 24x24x40 kernel

Flatten

Both with loss function: Mean Squared Relative Error (MSRE)

Training & Testing Process

Training on sample with energies 10, 20, 40, 60, 100 & 160 GeV

Loss evaluation

Validate model with validation sample (same energies, different events)

Test model on test sample 1 (same energies as training, different events)

> Predict energies & create histograms

Fit gaussian on histograms for comparison

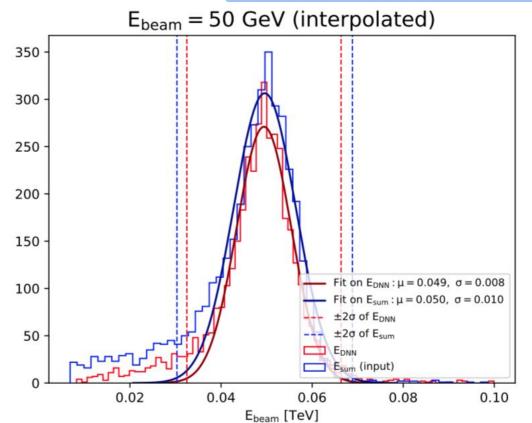
Test model on test sample 2 (other energies, different events)

> Predict energies & create histograms

Fit gaussian on histograms for comparison

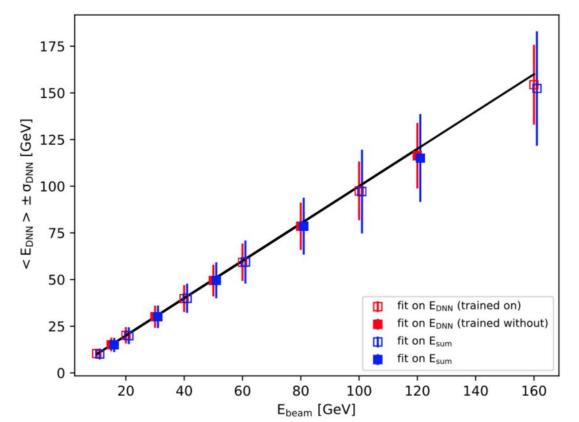
Compare:

Reconstructed Energies



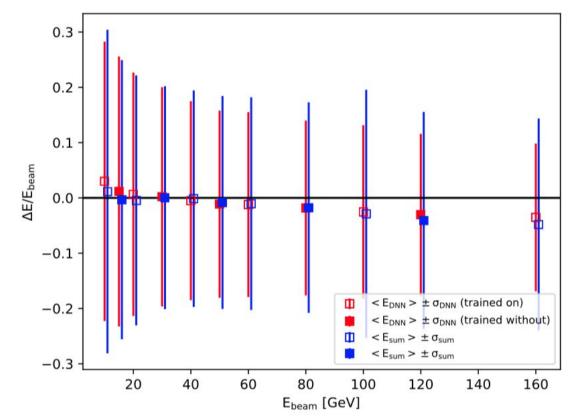
- Gaussian fit on histogram of reconstructed energy
- Comparison with original energy sum as "sanity check"
 - Based on a linear MIP-to-GeV factor of 29.7
- Histogram of reconstructed energy is always smaller than of energy sum
- Histograms and fits created for all energies of both test samples
- Tails through leakage (?)

Locally Connected Architecture



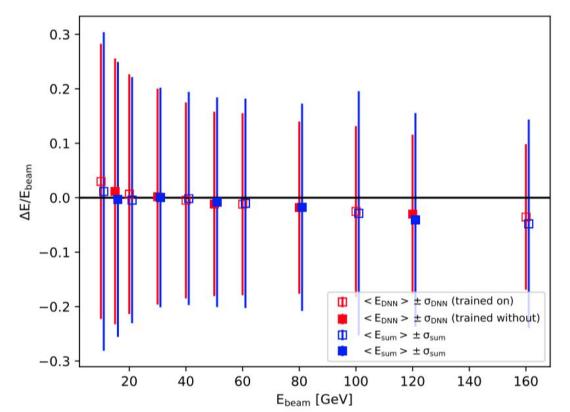
- → Overview of fit parameters for all energies
- → Error bars represent ±1σ intervall
- → Both training samples
 - No systematic difference observable

Locally Connected Architecture



- → No systematic difference between trained on and interpolated reconstructed energies
- \rightarrow σ for E_{reco} overall smaller than for E_{sum}
 - Network performance better than simple energy fit
- → Simple network learns MIP-to-GeV calibration
- → Per channel linear calibration is learned

Convolutional Architecture



→ Similar performance to Locally Connected layer

Overview

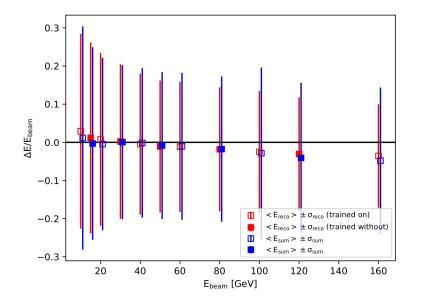
- Introduction
 - Neural Networks Basics
 - Network Architectures
- Preliminary Studies
 - Regression with 3D Convolutional Layer
 - Regression with Locally Connected Layer
- Summary & Outlook

Summary

- Conversion of TB data into file format for ML works
- Preliminary studies with energy reconstruction
- Energy interpolation learned by network
- Trained solely on real data, no MC simulations used
- MIP-to-GeV conversion learned by network
- Shallow architecture for easy understanding of network output
 - 3D convolutional layer to learn shower features
 - Locally Connected layer to learn calibration values for single channels

Outlook

- Implementation of deeper network architecture
- Energy reconstruction + Particle ID
- Training with MC simulation
- Usage of time information
- Studies with uncalibrated ADC data

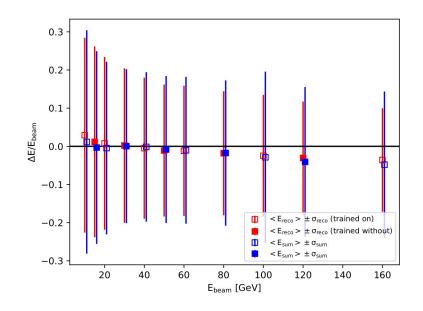


Outlook

- Implementation of deeper network architecture
- Energy reconstruction + Particle ID
- Training with MC simulation
- Usage of time information
- Studies with uncalibrated ADC data

Thank you!

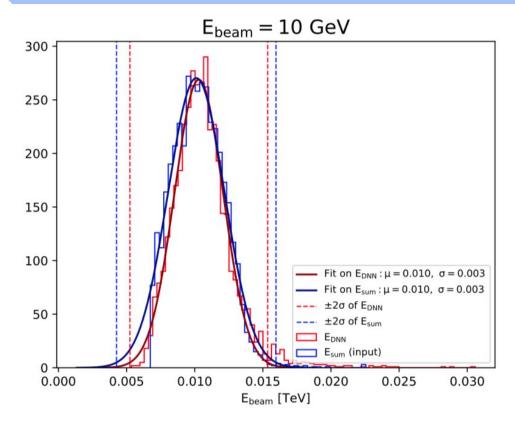
And more ideas?

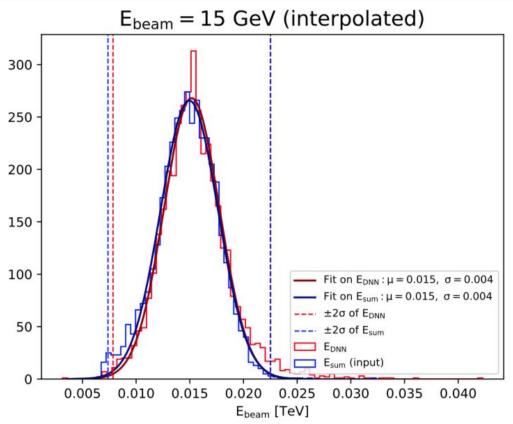


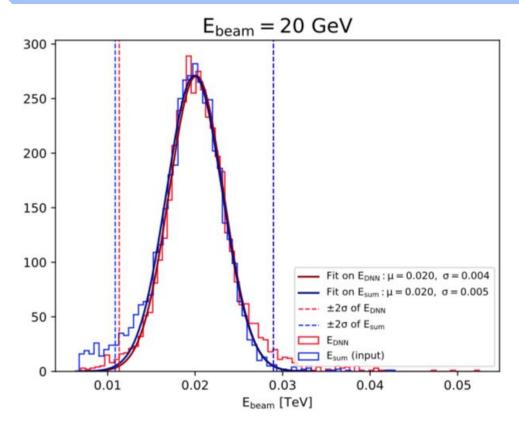
Bonus Slides

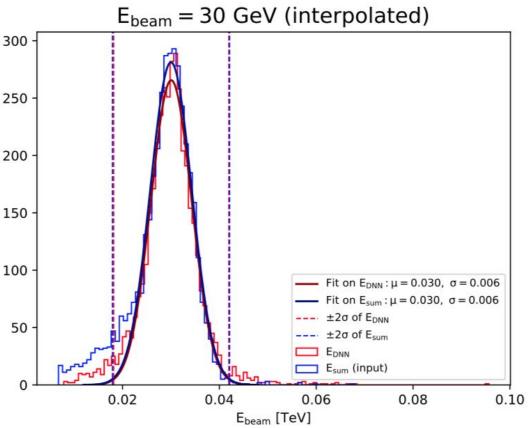
Friedrich Naumann FÜR DIE FREIHEIT

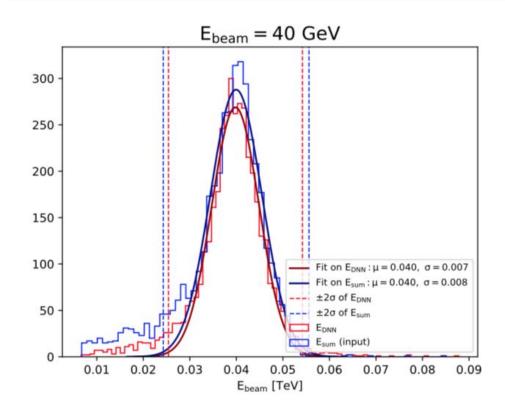
ALL THE OTHER HISTOGRAMS FOR EVERY ENERGY FOR BOTH ARCHITECTURES

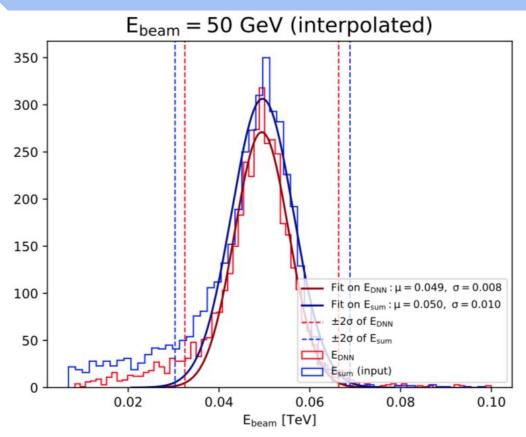


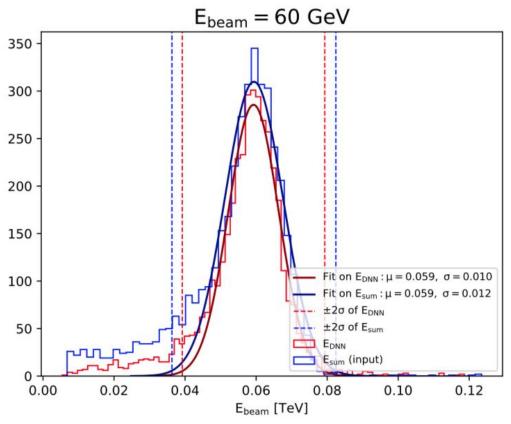


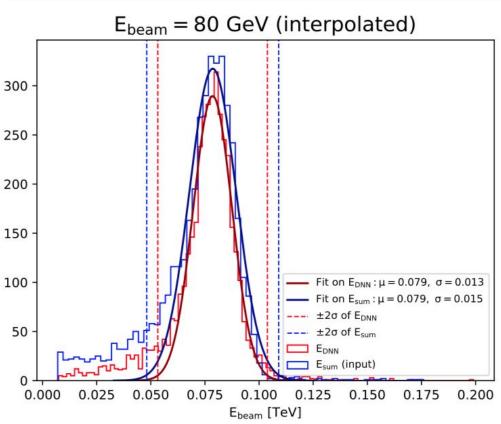


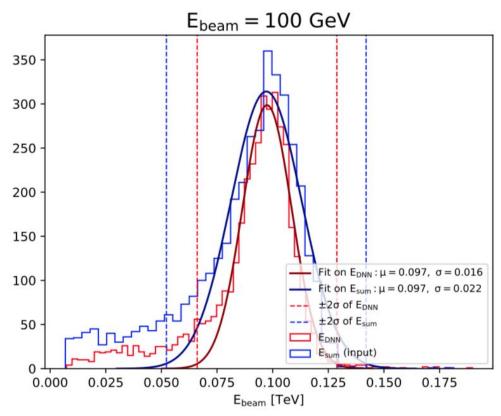


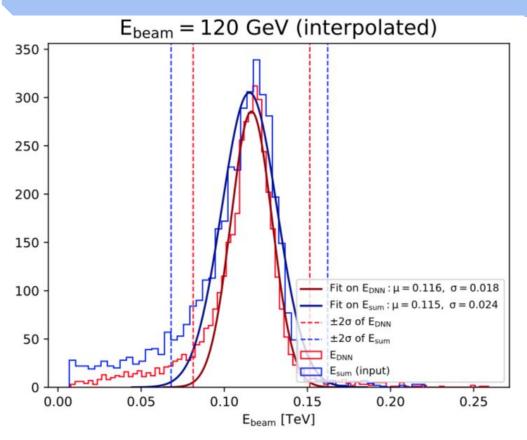


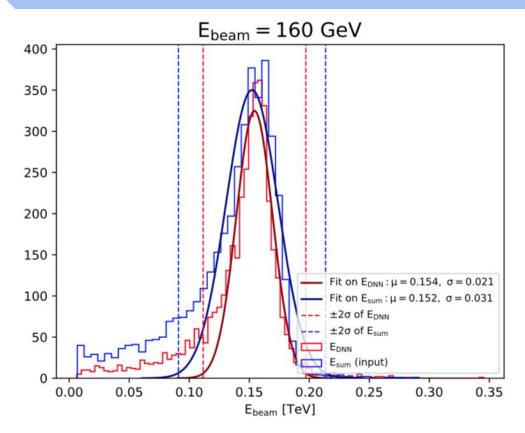


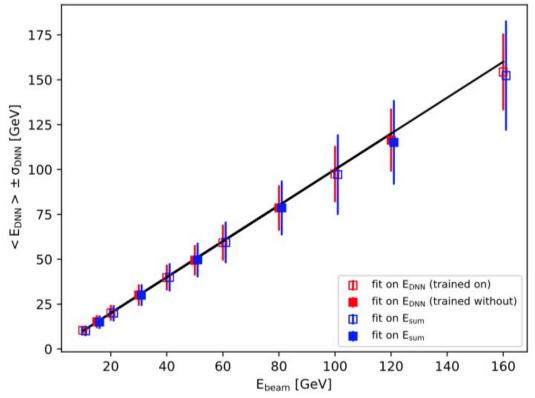




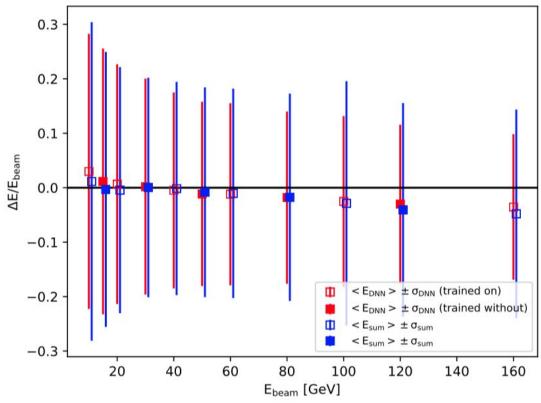




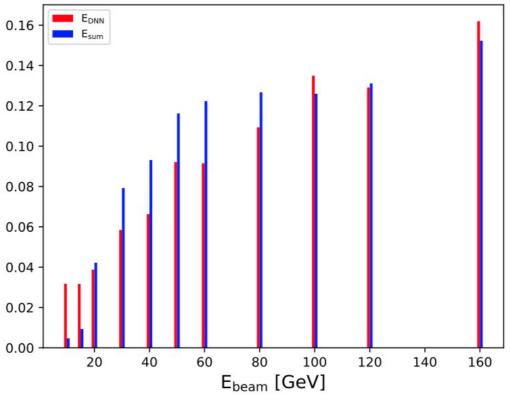


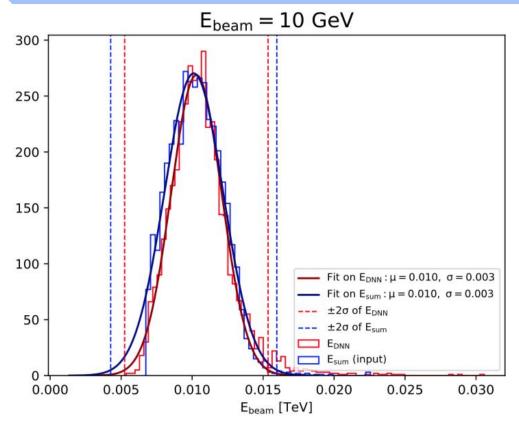


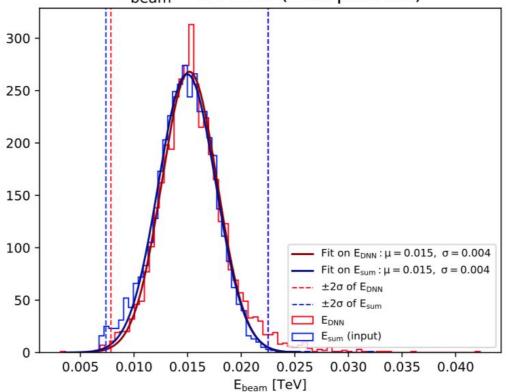
Pion Energy Reconstruction with Deep Neural Networks - Erik Buhmann

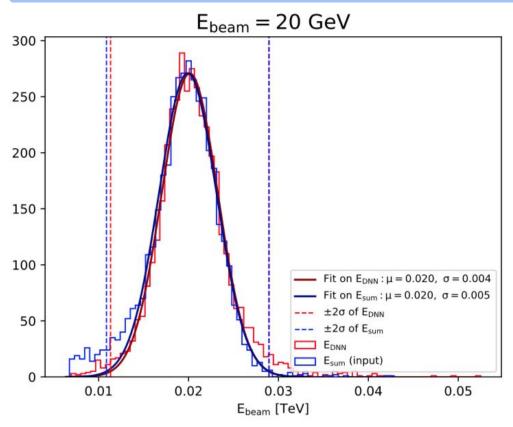


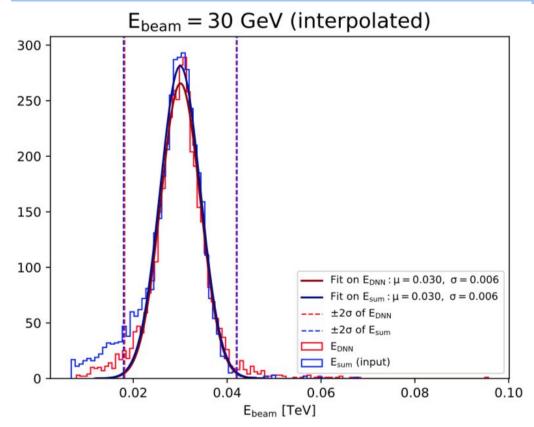
normalized number of tail entries (outside $\pm 2\sigma$)

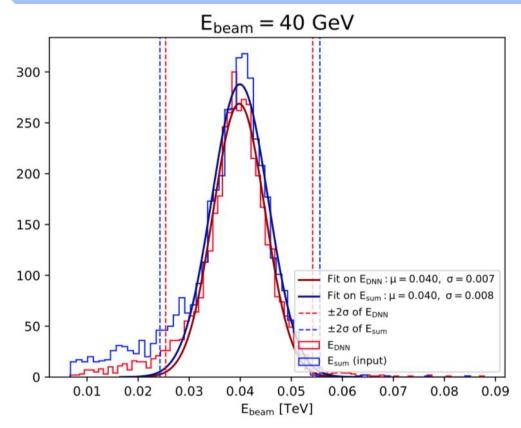




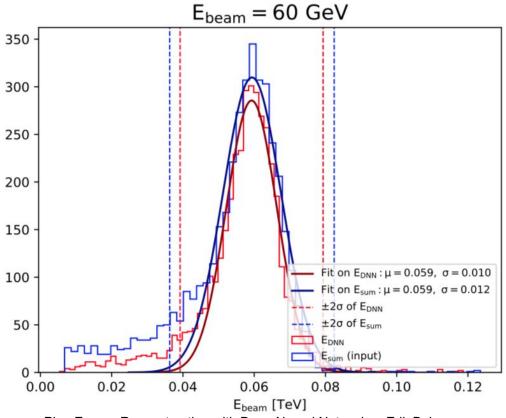


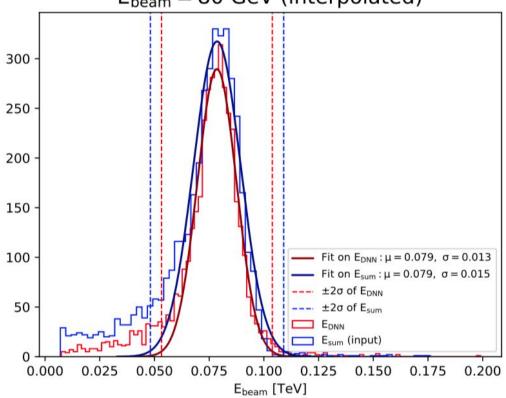


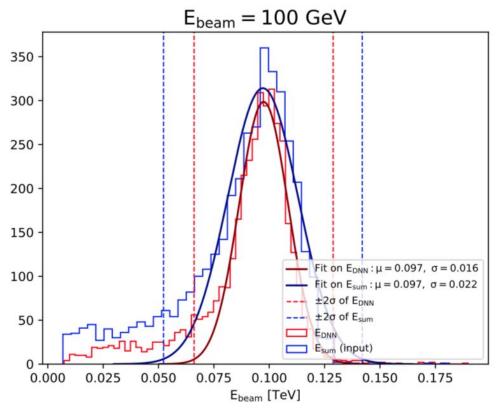


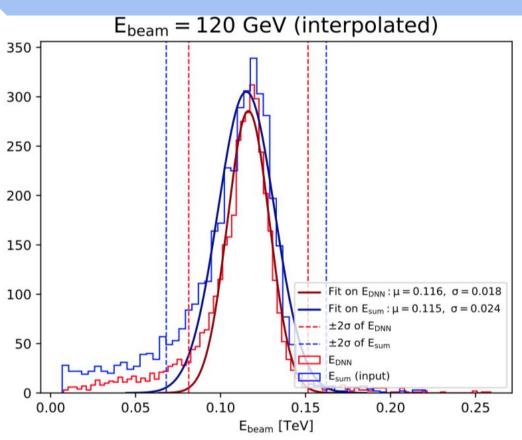


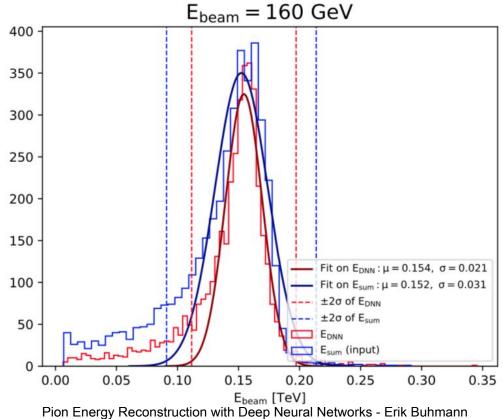


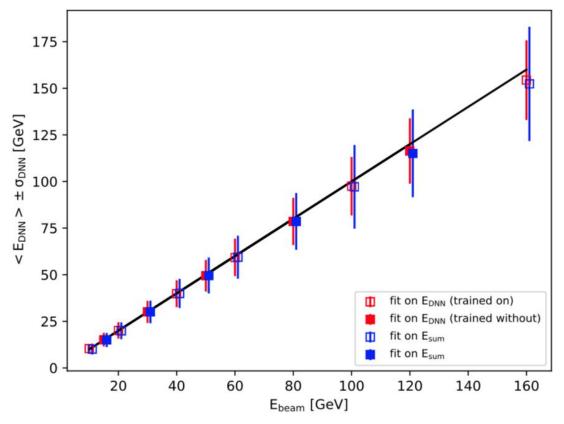


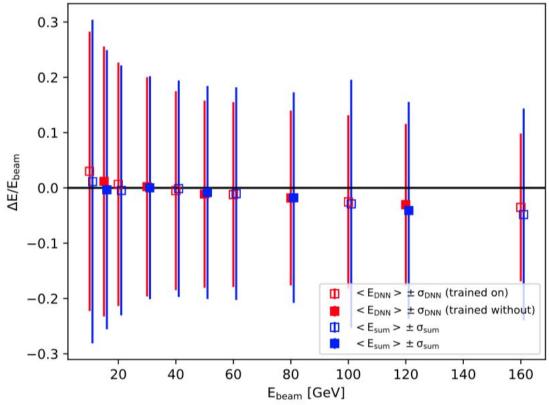












normalized number of tail entries (outside $\pm 2\sigma$)

