Summary of my work at the 2018 Tokyo Analysis Workshop

Saiva Huck

saiva.huck@desy.de

If your're not okay with pictures, let me know before my last slide in order to not show them or afterwards in order to delete them!

Overview

2 main tasks

- RootTreeWriter
 - Archaeology
 - Fixing of different variables
 - Documentation on Confluence
 - Processor/engine implementation now in Vladimir's hands
- Simulation Studies
 - Fixing of several issues
 - Muon studies
 - Adaptation of the "MIP2GeV conversion factor"
 - Pion studies

Overview

2 main tasks

- RootTreeWriter
 - Archaeology
 - Fixing of different variables
 - Documentation on Confluence
 - Processor/engine implementation now in Vladimir's hands
- Simulation Studies
 - Fixing of several issues
 - Muon studies
 - Adaptation of the "MIP2GeV conversion factor"
 - Pion studies

RootTreeWriter

- RootTreeWriter: Processor with several engines converting reconstructed slcio data into root trees, but also calculating several variables
 - Ongoing adaptation: Calculations done on slcio level, RootTreeWriter only as converter (Vladimir)
- First step: Archaeology to find exact definitions of several variables and try to document everything
- Second step: Adapt variables which don't represent what they are expected to be

energyDensity

Now actually looks like energySum/cellSize²

iE∨t

Now counts events instead of hits, starts at 1

Variables fixed

- energyDensity and all variables dependent on this
 - radiusEw!
- iEvt
- eventNumber and all variables dependent on this
 - o all per layer-variables
- cellSize in mm instead of cm
- ⇒ All variables now represent what they are expected to be
- ⇒ RootTreeWriter is in a place where it can temporarily stay

Overview

2 main tasks

- RootTreeWriter
 - Archaeology
 - Fixing of different variables
 - Documentation on Confluence
 - Processor/engine implementation now in Vladimir's hands
- Simulation Studies
 - Fixing of several issues
 - Muon studies
 - Adaptation of the "MIP2GeV conversion factor"
 - Pion studies

Confluence Documentation

https://confluence.desy.de/display/Calice/RootTreeWriter

Overview

Simulation Story

→ May data

2 main tasks

- RootTreeWriter
 - Archaeology
 - Fixing of different variables
 - Documentation on Confluence
 - Processor/engine implementation now in Vladimir's hands
- Simulation Studies
 - Fixing of several issues
 - Muon studies
 - Adaptation of the "MIP2GeV conversion factor"
 - Pion studies

No MIP peak in simulated pion data

No MIP peak in simulated pions

- No MIP peak in simulated pion data: check muon simulations
- Also no MIP peak in simulated muon data

Universität Hamburg No MIP peak in simulated muons

⇒ We must be losing low-energy hits!

- No MIP peak in simulated pion data: check muon simulations
- Also no MIP peak in simulated muon data: is the peak shifted by the "MIP2GeV conversion" factor or cut off by thresholds?

MIP2GeV adaptation

- No MIP peak in simulated pion data: check muon simulations
- Also no MIP peak in simulated muon data: no difference from threshold changes, "MIP2GeV conversion" is not the problem
- Pedestal subtraction as simulation killer: not added pedestal is subtracted for simulation data during reconstruction

Removed pedestal subtraction

- No MIP peak in simulated pion data:
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values

Distributions shifted

- No MIP peak in simulated pion data: ✓
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values: check layer profiles

Addtitional layers in simulation

- No MIP peak in simulated pion data:
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values: check layer profiles
- Simulated layer profiles have additional layers

Universität Hamburg Fixed layer number in simulation

- No MIP peak in simulated pion data: ✓
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values: improved
- Simulated layer profiles have additional layers:
- MIP peak not exactly at 1 MIP

MIP peak at > 1

- No MIP peak in simulated pion data:
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values
- Simulated layer profiles have additional layers:
- MIP peak not exactly at 1 MIP: adapt "MIP2GeV conversion" factor using Landau-Gauss fit used for MIP calibration

MIP peak very close to 1

⇒ Deviations below 1% for different fits, binnings and energies

- No MIP peak in simulated pion data: ✓
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values
- Simulated layer profiles have additional layers:
- MIP peak not exactly at 1 MIP: ✓
- Rise in layer profiles for simulated data

Shifted distributions

Rise in layer profiles

- No MIP peak in simulated pion data: ✓
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values: ?
- Simulated layer profiles have additional layers:
- MIP peak not exactly at 1 MIP: ✓
- Rise in layer profiles for simulated data: ?

Muon data event displays

⇒ Ideas for data nHits cuts

double-muon events

nHits < 60 && nHits > 25

Simulation Story

- No MIP peak in simulated pion data: ✓
- Also no MIP peak in simulated muon data:
- Pedestal subtraction as simulation killer:
- nHits and energySum shifted to higher values: ?
- Simulated layer profiles have additional layers: ✓
- MIP peak not exactly at 1 MIP: ✓
- Rise in layer profiles for simulated data: ?
- ⇒ To be continued

Overview

2 main tasks

- RootTreeWriter
 - Archaeology
 - Fixing of different variables
 - Documentation on Confluence
 - Processor/engine implementation now in Vladimir's hands
- Simulation Studies
 - Fixing of several issues
 - Muon studies
 - Adaptation of the "MIP2GeV conversion factor"
 - Pion studies
 → 10, 30, 50, 80, 100, 120 GeV

energySum

100 GeV Number of Entries Data 0.005 MC 0.004 energySumHisto_MC energySumHisto_Data **Entries** 5000 **Entries** 104904 3176 Mean Mean 2116 0.003 Std Dev 1083 Std Dev 1186 0.002 0.001

2000

3000

1000

4000 5000 Energy Sum in MIP

shower profile

nHits

nHits profile

First look at simulated pions

First look at simulated pions

Outlook

Done:

- RootTreeWriter is in a reasonable state for being left as it is temporarily
- RootTreeWriter documentation is complete
- Many simulation bugs are fixed and May simulation is working reasonably well for current status
- Simulation MIP peak is very close to 1

Ongoing:

- Pion simulation studies
- Different detector positions for simulated muons
- Clean-up of data for comparison to simulation

Future steps:

- o Investigate the shift to larger values and rise with increasing layer number in simulation
- Higher statistics for everything
- June data simulation studies
- Repeat studies for new calibration constants

Thank you to all!

- Thank you for the very instructive, productive and also fun workshop!
- Thanks to everyone for the help, especially Christian!
- Thank you for including us master students as a real part of the team!

Thank you to all!

Thank you for your attention!

August 2018

Summary of the 2018 Tokyo Analysis Workshop - Saiva Huck

Backup

hitEnergy

