Small update on Seismic Isolation

Mini-Workshop on ILC Infrastructure and CFS for Physics and Detectors 2018/11/28 KEK

Tomo SANUKI (Tohoku U.) Ichiro SEKINE, Shinsuke INAI (TODA Corporation)

HOME Achieveme

HOME > Technology

TODA

TODA CORPORATION

Technology

These pages showcase some of Toda Corporation's most importa Toda Corp. also uses numerous technologies not listed here. Toda techniques and technologies for each client project.

Toda construction technologies

Structural technologies

High-rise RC technology, technologies for construction highly earthquake-resistant buildings, etc.

Structural technologies

Indoor environment technologies

Technology to analyze indoor environments, comprising aspects such as temperature, humidity, airflow, dust, chemicals, sound, and light

Indoor environment technologies

Civil engineering technologies

Technologies to improve infrastructure that supports more comfortable and convenient living

<u>Civil engineering technologies</u>

Terms of Use

toda.co.jp	C	• • • •
rements and Scope Technology Company Info	ontact Us Site Map Japanese Investor Relations	
	Achievements and Scope	
	Technology	
	Structural technologies Environmental technologies	
	Indoor environment technologies	
	Renovation technologies	
portant construction techniques and technologies. Toda Corp. combines the optimal construction	<u>Civil engineering technologies</u>	
	Company Information	
	Investor Relations	
Environmental technologies		
Technologies born of initiatives aiming to achieve coexistence		

between human being and nature and creatively restore the global environment

 Environmental technologies Environmental initiatives (PDF 9.58MB)

Renovation technologies

Toda Corp.'s renovation proposals and implementation bear in mind the structure's entire life cycle cost, from planning and construction, to maintenance and management, to demolition and disposal.

Renovation technologies

TOP of the Page

 \mathbf{O}

"Earthquake protection for LC detectors" Fernando Duarte Ramos (CERN) LCWS2012 @UTA

Above platform isolation

- Friction pendulum isolators beneath the detector feet;
- Reliable technology;
- No high compliance elements (e.g. rubber) improves the positioning of the detector;

Earthquake protection for Linear Collider detectors – LCWS12, Arlington, USA | 17

Earthquake-Resistant Building

Earthquake-Resistant Building

Seismic Resistance

Vibration Control

Base Isolation

Base Isolation

Tohoku University, Science Complex C

Base-isolation

Science Complex C

Rubber Bearing

Rubber Bearing

Rubber Bearing

Rubber Bearing

Science Complex C

28 Legs / Rubber bearings

TDR

Base-isolation?

Earthquake

Seismic Resistance

Base Isolation

Microtremor

Seismic Resistance

Base Isolation

Measurement of vibration at existing buildings

Result (Microtremor)

[1] https://www.bridgestone.com/products/diversified/antiseismic_rubber/product.html [2] http://www.adc21.com/201_korogari.html

Result (Microtremor)

Response analysis (Microtremor/Earthquake)

Simplified model

(assumption)

Base Isolation

Base Isolation - 1

Base Isolation - 2

		-		
20	9	ri	n	
ノし				U
	<u> </u>			\sim

Input spectrum (Fujisawa-Sta.)

EW1_Fujisawa_311(kik-net) EW2_Fujisawa_311(kik-net) 00000

0%

Ch

10

m

2011 Tohoku Earthquake The most severe case

KiK-net (Fujisawa station) GL

KiK-net (Fujisawa station) **GL-100m**

HI-net (Fujisawa station) GL-100m

|KiK-net (Kiban Kyoshin (基盤強振) network) nation-wide strong-motion seismograph network

HI-NET (Hi-sensitivity Seismograph Network Japan) nation-wide high-sensitivity seismograph network

Result (Microtremor)

Seismic Resistance

00 40 20 0 -20 -20 -40 -60

Base IsolationImage: DistributionImage: Distribution	Rubber Bearing + Oil damper	Displacement (nm)	60 40 20 0 -20 -20 -40 -60
Base IsolationImage: DistributionImage: Distribution	2 Rubber Bearing + Rigid Sliding Bearing + Oil damper	Displacement (nm)	60 40 20 0 -20 -40 -60

Result (2011 Tohoku Earthquake) The most severe case

Movement / Displacement (Earthquake)

Result (2011 Tohoku Earthquake) The most severe case Seismic Resistance 5.0

Displacement (cm)

2.5

0

-2.5

-5.0

0

-2.5

-5.0

acem

Displ

Platform

Base Isolation - 1			5.0
	Rubber Bearing +	ent (cm	2.5
rww ¹	Oil damper	ceme	0
Platform		splac	-2.5
		D	-5.0
Raca lealation 2		<u>(</u>	5.0
Dase Isolation - Z	Rubber Bearing	ent (cn	2.5

+ **Rigid Sliding Bearing** ╋ Oil damper

EW1_Fujisawa_311(kik-net) EW2_Fujisawa_311(kik-net) 00000

0%

Ch

10

m

2011 Tohoku Earthquake The most severe case

KiK-net (Fujisawa station) GL

KiK-net (Fujisawa station) **GL-100m**

HI-net (Fujisawa station) GL-100m

|KiK-net (Kiban Kyoshin (基盤強振) network) nation-wide strong-motion seismograph network

HI-NET (Hi-sensitivity Seismograph Network Japan) nation-wide high-sensitivity seismograph network

Summary

- shows good properties
 - Earthquake : Enough damping
 - Microtremor : No amplification

for more realistic analysis

Rubber Bearing + Rigid Sliding Bearing + Oil damper

Need natural period(s) of the ILD and the accelerator