Gantry crane for detector lowering

2018/11/29 @Infra/CFS mini-ws Y. Sugimoto

INTRODUCTION

Discussion at SCJ committee

- We plan to lower ILC detectors using >4000t gantry crane (GC) by separating each detector into several parts
- Some of (sub-) committee members expressed doubt about feasibility of the >4000t GC
- I discussed with one of them when they visited KEK
 - I explained the structure of the GC (strand jacks), and showed some examples in Japan (3000t for Tokyo Sky Tree and 6000t for Kyocera Dome)
 - He understood the GC itself, but still has a doubt in the foundation (antiseismic design)
- Actually, as far as I know, there is no study of the anti-seismic design of the GC in Japan
- Risks of 4000t GC should be estimated
- Also, risks of not using 4000t GC has to be studied
- There is no description on this issue in the report by the SCJ committee

Discussion at SCJ committee

• Gantry Crane in their mind?

Discussion at SCJ committee

Gantry Crane in our mind

Strand Jack

RISKS OF GANTRY CRANE

Possible risks

Strand jacks

- CMS used 4x580t strand jacks
- Japanese company (Taihei Dengyou) can provide with 600t strand jacks with safety factor 3
- UK company (DLT) produces up to 1672t strand jacks
- US company (Enerpack), which has Japanese branch, can produces 1250t strand jacks
- Optimization of capacity/# of jacks should be done to minimize the cost

Connection between strands and detectors

- Detailed study on connection between strands and ILD has not been done yet
- We can learn from CMS

- Endcap is supported from the bottom
- YB0 is suspended from the yoke
 - Brackets fit in notches of the yoke
 - Brackets on both sides are connected by a thick rod
- CMS must have changed the position of strand jacks

10

Beam

- Second moment of area of I-beam $I = \frac{bd^3 - h^3(b - t)}{12}$
- X2 strength can be achieved by 20% increase of size

Column/Foundation

- GC for ILC detectors should be resistant against big earth quakes, particularly when a detector piece is suspended in Assembly Hall
- 3-column option with common platform in Assembly Hall could be an attractive option
- Anti-seismic design of columns and its foundation is mandatory
- Such design should be done by experts (civil engineering company) → We need some amount of budget

Operation – Load test

Detector weight – ILD

Item	Mass (tons)
Barrel Yoke	2300
Solenoid	304
HCAL	640
ECAL	75
Barrel Total	3319 (2300)

ltem	Mass (tons)
Endcap Yoke	3250
HCAL	290
ECAL	25
Endcap Total	3565

Operation – Load test

• Detector weight – SiD

ltem	Mass (tons)			
	30° 11 layers	30°10 layers	15°11 layers	
Yoke Iron	3863	3372	3569	
Feet	80			
Solenoid	180			
HCAL	417			
Barrel Total	4540	4049	4246	
ltem		Mass (tons)		
	30°11 layers	30° 10 layers	15°11 layers	
Yoke Iron	1655			
HCAL	55			
ECAL	12			
Packman	216			
Brackets	76			
Cart	277			
Endcap Total	2291			

16

Operation – Load test

- Load test
 - If maximum load is 4000t, we have to do a load test with 4000tx1.25=5000t
 - We can do that with platform+ILD barrel ring (w/o detector)
 - Platform in Assembly Hall ~20mx20mx2.7mx2.5t/m³=2700t
 - ILD barrel ring w/o detector ~ 2300t
 - Total 5000t

Load test of CMS gantry crane with >800t iron blocks + platform(1920t)

Operation – Lowering

- Protection against big earthquake during lowering
 - 3.11. earthquake happened during lifting up 3000t Gain Tower of Tokyo Sky Tree
 - There was no damage because it was supported from the side
 - We should adopt similar way during detector lowering

- Load on the platform is x2 larger than CMS case
- Can it move with such heavy load?
 - CMS platform slid without detector piece on
 it : ~ 1920t
 - SiD barrel + Platform ~ 6700t has to slide !!

➔ A new idea of "Common Platform"

• Present design

Common Platform option

Cost

 The cost of 4000t GC was estimated in Japan several years ago

- VSL : ~X6 more expensive than CMS case

- Taihei Dengyou : Slightly higher than VSL
- More serious estimation should be done
- Cost sharing should be discussed

 CMS group paid the cost for GC from their common fund

Risks of not using 4000t GC

- What happens when capacity of GC is 2000t?
 - Detector has to be divided into more pieces
 - As a consequence, we need more assembly space, more integration/lowering time, and more cost
 - We might have to go back to underground assembly

		Weight		Division		
		Yoke	Detector	4000t	2500t	2000t
ILD	Barrel	6900	1019	3	3* or 5	5
	Endcap	3250x2	315x2	2	4	4
	Total			5	7 or 9	9
SiD	Barrel	3372	677	1	3	3
	Endcap	1655x2	636x2	2	2	4
	Total			3	5	7

* Detector installation in Detector Hall (underground)

In case of 2000t GC

ILD YB0

SUMMARY

Action item

Item	Action	Who?
Strand jacks	 Optimization of capacity and number 	Det., CFS, Company
Connection between strands and detector	 Detailed design of connection 	Det
Beam/column/foundation	Anti-seismic design of gantry	CFS, Company
Operation	Decision of maximum weightDetailed design of support arm	SiD Det., CFS
Platform in AH	Agreement by ILD and SiDDetailed design	Det., CFS Det., CFS, Company
Cost	 Detailed cost estimate 	CFS, Company
In case of 2000t GC	 Study of necessary space and assembly timeline Mechanical study of sub-divided detector 	Det.

It seems there is no show-stopper for 4000t gantry crane

BACK-UP SLIDES

ILD

ILD

ILD Barrel

ILD Weight

Item	Mass (tons)
Barrel Yoke	2300
Solenoid	304
HCAL	640
ECAL	75
Barrel Total	3319 (2300)

ltem	Mass (tons)
Endcap Yoke	3250
HCAL	290
ECAL	25
Endcap Total	3565

SiD

Barrel-Door partitions

Barrel = 3,059 tons

Door = 1,996 tons

45 deg

30 deg

15 deg

0 deg Baseline

Bx field Far Region - All

SiD Barrel

SiD Endcap

SiD Endcap

SiD Weight

Item	Mass (tons)		
	30° 11 layers	30° 10 layers	15°11 layers
Yoke Iron	3863	3372	3569
Feet	80		
Solenoid	180		
HCAL	417		
Barrel Total	4540	4049	4246

Item	Mass (tons)			
	30°11 layers	30°10 layers	15°11 layers	
Yoke Iron	1655			
HCAL	55			
ECAL	12			
Packman	216			
Brackets	76			
Cart	277			
Endcap Total	2291			

SiD in Vertical Shaft

 Detector modules (max 2000t) are lowered from Assembly Hall on surface to ~100m deep underground Detector Hall

