

Study of Higgs couplings to leptons and Higgs CP properties at the ILC

Daniel Jeans, KEK for the International Large Detector group

ICHEP 2018, Seoul

The International Linear Collider Project

```
Higgs coupling to leptons
BR (H \rightarrow \mu \mu)
BR (H \rightarrow \tau \tau)
Higgs CP properties in
H \rightarrow \tau \tau
```

 $H \rightarrow ZZ, WW$

Summary

International Linear Collider

electron – positron collisions SCRF accelerating technology beam polarisation: e⁻ 80%, e⁺ 30% Iuminosity ~10³⁴ cm⁻² s⁻¹

start with collisions at 250 GeV

presently under in-depth

Japanese Government

consideration by the

linear accelerator

 \rightarrow future energy upgrades possible, if and when needed

and the second secon

ILC 250 physics program

2 ab^{-1} over ~15 years

electro-weak symmetry breaking

comprehensive and precise study of Higgs sector

electro-weak processes LEP2 + polarisation ~ 1000 times more data

 \rightarrow indirect bounds on new physics beyond SM

direct searches for BSM particles

profit from trigger-less readout

efficiency for lower energy signatures see talks by M. Berggren, Y. Wang

see talk by

see talk by

S. Bilokin

T. Ogawa

International Large Detector

one of two detector concepts being developed for ILC

high precision detector optimised for particle flow reconstruction

silicon, gaseous tracking systems

high granularity calorimetry

The International Linear Collider Project

Higgs coupling to leptons BR ($H \rightarrow \mu \mu$) BR ($H \rightarrow \tau \tau$)

Higgs CP properties in $H \rightarrow \tau \tau$ $H \rightarrow ZZ, WW$

Summary

test relation between leptonic Yukawa couplings and particle mass

in this talk, concentrate on measurements at ILC250

Higgs boson coupling to muons

arXiv:1801.07966

challenge: small sample due to tiny BR ($h \rightarrow \mu \, \mu$) $\sim 2 \ x \ 10^{-4}$

key: excellent momentum resolution $dp_T/p_T \sim 3 \times 10^{-5} p_T$

Full detector simulation, realistic reconstruction algorithms $e^+ e^- \rightarrow HZ$ Two final states: $e^+ e^- \rightarrow \mu \mu q q$ $e^+ e^- \rightarrow \mu \mu \nu \nu$ Multivariate analysis to suppress backgrounds expected relative precision on σ (h + X) · BR (h $\rightarrow \mu \mu$) at ILC : 20.5 % [ILC250 / 2 ab⁻¹]

15.4 % [+ ILC500 / 4 ab⁻¹]

preliminary

Eur. Phys. J. C75 (2015) no.12, 617

Higgs boson coupling to taus

 $e^+ e^- \rightarrow H Z \rightarrow \tau \tau + (ee, \mu \mu, q q)$

isolated narrow jets,

1 or 3 charged particles total jet charge ±1 invariant mass < 2 GeV/c²

colinear approximation to estimate tau neutrino momenta

various cuts to reduce backgrounds final multivariate analysis [BDT]

expected precision at ILC on σ (h + X) · BR (h $\rightarrow \tau \tau$): 1.2 % [ILC250 / 2 ab⁻¹] 1.0 % [+ ILC500 / 4 ab⁻¹]

The International Linear Collider Project

Higgs coupling to leptons BR ($H \rightarrow \mu \mu$) BR ($H \rightarrow \tau \tau$)

Higgs CP properties in $H \rightarrow \tau \tau$ H $\rightarrow ZZ$, WW

Summary

Do Higgs couplings conserve CP ?

e.g.

f f H coupling:

$$\mathscr{L}_{ffH} \sim g f (\cos \psi_{CP} + i \gamma^5 \sin \psi_{CP}) f H$$

SM: $\psi_{CP} = 0$

Z Z H coupling $\mathscr{L}_{ZZH} \sim M_Z^2 \left(\frac{1}{\nu} + \frac{a_z}{\Lambda}\right) Z_\mu Z^\mu H + \frac{b_z}{2\Lambda} Z_{\mu\nu} Z^{\mu\nu} H + \frac{\widetilde{b}_z}{2\Lambda} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} H$ SM: $a_z = b_z = b_z^2 = b_z^2 = 0$

11

CP of tau pair reflected in correlation between tau spin components transverse to tau momenta

distribution of tau decay products gives sensitivity to tau spin direction via *polarimeters*

distribution of $\Delta \phi$ is sensitive to CP mixing angle ψ_{CP}

to maximise analysing power of the polarimeters, should fully reconstruct tau decay kinematics (including the tau neutrino momenta)

Full tau reconstruction

in a 2-tau system with hadronic tau decays (1 ν / tau decay),

there are 6 unknowns / event: 2 x neutrino 3-momenta

6 constraints are available, if we know the tau production vertex, the impact parameters of charged tau decay products, → defines plane of tau momentum the p_T of the 2-tau system,

 $\rightarrow\,$ insensitive to ISR and beamstrahlung

Method is applicable to $e^+ e^- \rightarrow (Z \rightarrow visible)$ (H \rightarrow tau tau) at ILC

ILD full simulation

Jet measurement

14

reconstruct Z \rightarrow (e e / μ μ / jets) + 2 × (1-prong tau jets) simple preselection

some distributions after reconstruction and pre-selection:

group events according to sensitivity to CP quality of event reconstruction background contamination longitudinal polarimeter components

CP sensitive observable $\Delta \phi$

arXiv:1804.01241 to appear in PRD

signal distribution: phase of modulation is sensitive to CP backgrounds: consistent with flat distribution

simultaneous unbinned likelihood fit to $\Delta \phi$ distributions in all channels

with 2 ab⁻¹ of ILC250 data, can measure ψ_{CP} with a precision of **75 mrad (4.3 deg)**

Summary

As part of its comprehensive set of precision measurements of the Higgs sector, **detectors** at **ILC250** will measure:

 σ (h + X) · BR (h $\rightarrow \mu \mu$) with a precision of 20.5 % σ (h + X) · BR (h $\rightarrow \tau \tau$) with a precision of 1.2 % CP mixing in h $\rightarrow \tau \tau$ with a precision of 75 mrad CP properties of HZZ, HWW couplings

backup

estimating measurement sensitivity

unbinned maximum likelihood fit: simultaneously in all sensitivity bins and selection channels fit a single parameter: the phase of $\Delta \phi$ distribution

perform series of toy pseudo-experiments using simulated distributions

results of 10k pseudo-exps

Benchmarking

1 ab⁻¹, unpolarised beams

		δψ _{cP} [mrad]
signal only	perfect reconstruction	25
signal only	realistic reconstruction	75
signal + background	realistic reconstruction	116
only Z → qq	realistic background, reconstruction	122
only $Z \rightarrow \mu \mu$,	realistic background, reconstruction	412

250 GeV ILC, 2 ab-1

full analysis realistic backgrour	d, reconstruction 75
-----------------------------------	----------------------