Search for Light Scalars Produced in Association with a Z boson at the 250 GeV stage of the ILC

Yan Wang (DESY, IHEP) on behalf of the ILD group

ICHEP 2018, Seoul

July 2, 2018

Motivation

The scalar found in 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- 2HDM, NMSSM, Randall Sundrum model
- a scalar S^0 lighter than 125 GeV is well motivated. JHEP 12 (2016) 068

survived after indirect + LEP + LHC constrains

- LEP/LHC constrains rely on the model details: CP, mass hierarchy, couplings, etc.
- want a better result?

2/20

ILC — The International Linear Collider

ILC properties:

• e^+e^- collider, with polarized beams (e^- : \pm 0.8, e^+ : \mp 0.3).

ILC running scenario for totally 22 years:

- $\sqrt{s} = 250$ GeV and $\int Ldt = 2/ab$ for the first stage \rightarrow "ILC@250"
- Energy-upgradable

▶
$$\sqrt{s} = 350$$
 GeV and $\int Ldt = 0.2/at$
▶ $\sqrt{s} = 500$ GeV and $\int Ldt = 4/ab$

upgradable to 1 TeV.

Construction under political consideration in Japan.

• comparing with LEP: ILC is sensitive to lighter scalars with smaller S^0ZZ coupling.

	LEP	ILC	improvement	
max \sqrt{s} (GeV)	189-209	250		
m_h region (GeV)	<115	<160		
luminosity	totally $\sim 2.5 \; fb^{-1}$	2000 fb^{-1}	recoil mass	
polorization	×	\checkmark	angle correlation	
detector	ALEPH, DELPHI, OPAL, L3	ILD, SiD	resolution	
search channels	2b2q,2 $b2 u$,2b2l, $ au au qq$	model independent		

Phys.: Conf. Ser. 110 042030

comparing with LHC

- \blacktriangleright LHC, complex initial states and backgrounds, $S^0 \to \gamma \gamma/ZZ...$ channel, large uncertanties.
- ▶ ILC, e^+e^- well known initial states, clean environment, model-independent.

The Recoil Method on SM Higgs at ILC

 e^+e^- collider ightarrow know the initial states behaviour ightarrow recoil technique ightarrow model independence

Higgsstrahlung process $e^+e^- \rightarrow Z + H/h$

• $M_{rec}^2 = (\sqrt{s} - E_{\mu\mu})^2 - |\vec{p}_{\mu\mu}|^2$ • $M_{\mu\mu} \sim M_Z$, $M_{rec} \sim M_{H/h}$

Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 |

SM Higgs recoil mass distribution (ILD)

5/20

LEP results (CERN-EP-2002-032):

- the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - 91.2 GeV and 115.4 pb⁻¹ at LEP1
 - 161 to 202 GeV and 662.4 pb⁻¹ at LEP2.
- light higgs mass: 10 keV 100 GeV

$$\blacktriangleright \ k = \frac{\sigma_{S^0Z}}{\sigma_{H_{\mathsf{SM}}Z}(m_{H_{SM}}=m_{S^0})}$$

ILD (International Large Detector) and full simulation of Signal and SM Background

- optimized for particle flow
- Momentum resolution: $\sigma_{1/p_T} < 2 * 10^{-5} \, \text{GeV}^{-1}$
- excellent tracking performance

The signal MC samples

- $M_{S0} = 10, 15, 20, ..., 120 \, \text{GeV},$ every 5 GeV step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

Full SM backgrounds, including 125 GeV Higgs.

Yan Wang | Searching for new light scalars at the ILC | July 2, 2018

analysis flow

Principle: using the smallest amount of information of S_0 decay.

Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 |

recoil mass distribution

 $\frac{M_Z > M_{S^0} > 40}{40 > M_{S^0}}$

 $e^+e^- \rightarrow \mu^+\mu^-, \quad e^+e^- \rightarrow \mu^+\mu^-$

Comparing with MC results

- ▶ 95% CL upper bounds on scale factor of cross section with likelihood methods
- MC results with the same cuts.
- slightly different in the low mass region \rightarrow ISR photons. Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 | 10/20

Comparing with LEP results

$$\blacktriangleright \ k = \frac{\sigma_{S^0Z}}{\sigma_{H_{\mathsf{SM}}Z}(m_{H_{SM}} = m_{S^0})}$$

- LEP recoil: LEP2 data from 161 GeV to 202 GeV, combined LEP1 data.
- ▶ LEP traditional: exclusive reconstruction of Z and h decay, mainly $h \rightarrow bb$, $h \rightarrow \tau \tau$.
- ▶ 1-2 orders of magnitude improvement over LEP's recoil results \rightarrow discovery opportunity!
- $$\label{eq:main_star} \begin{split} \mathbf{\blacktriangleright} \mbox{ when } 100 \geq M_h \geq 50 \mbox{ GeV}, \mbox{ trend are similar with LEP.} \\ & \mbox{ Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 | 11/20 } \end{split}$$

A lighter higgs is favored in many BSM models

2HDM, NMSSM, RS ...

A model-independent analysis has been performed.

- mass range [10, 120) GeV
- 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
- (-+,+-,--,++) = (45%, 45%, 5%, 5%) polarization scenario
- Exclusion limits for k^{95} (cross section scale factor)
 - ▶ $k^{95} \in (0.003 0.02).$
 - 1-2 orders of magnitude more sensitive than LEP covering substancial new phase space

backup

Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 | 13/20

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- General Two Higgs Doublet Model (2HDM...)
 with 2 scalars: h, H, 1 pheudoscalar A, 2 charged particles
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 with 3 scalars: h1, h2, h3, 2 pheudoscalars A1, A2, 2 charged particles
- Randall Sundrum model
 - a radion

In these models, a scalar lighter than 125 GeV is well motivated.

LHC Higgs boson rather SM-like \rightarrow new higgs coupling to Z boson strongly suppressed. Could we find it at the ILC?

LEP SM Higgs searches: constrain other extra scalars, whose properties, especially decay profile, are similar as SM higgs's.

LEP/LHC constrain rely on the model details: CP, mass hierarchy, couplings, etc. JHEP 12 (2016) 068

2HDM, Type I: $tan\beta > 1.2$, $m_A > 60$ GeV, $m_{H^{\pm}} > 80$ GeV ...

cut effi

Four regions.

signal & bkgs

mass reg	ion	main backgrounds	90000 1 1	
$125 > M_{S^0}$	$> M_Z$	Ever		
$M_{S^0} \sim N$	$M_Z = 4f_{zz}^l$, $4f^{sl}_{zz}$, $4f_{zz/ww}$, SM Higgs	5000	
$M_Z > M_{S^0}$	> 40	$2f_l, 4f_{zz}, 4f_{zz/ww}$		
$40 > M_{2}$	50	$2f_l$	0	

Cut efficiencies for different masses:

$\int Ldt = 2000 f b^{-1}$	new higgs	$4f_l$	$4f_{sl}$	$2f_l$	total bk	cut efficiency	significance
$m_h=115{\rm GeV}$	17419.6	61033.9	53869.4	13877.7	128781	0.67	45.56
$m_h = 90 \; {\rm GeV}$	22198.2	63210.7	74563	18514.2	156288	0.59	52.54
$m_h = 70 \text{ GeV}$	26841.3	51671.6	60357.7	37166.6	149196	0.57	63.97
$m_h = 50 \text{ GeV}$	30493.5	46128.1	54372.8	80074.4	180575	0.54	66.37
$m_h = 30 \text{ GeV}$	33843.7	51206.6	55743.3	213184	320134	0.49	56.88

significance =
$$\frac{S}{\sqrt{S+B}}$$
, and $S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L}$, where $\kappa_{gZZ} = 1$
Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 | 16/20

- \blacktriangleright 2 σ exclusion limits with a bin-by-bin comparison between the signal and backgrounds recoil mass histograms.
- ▶ the background-only hypothesis no new higgs in the investigated mass range.
- ▶ the signal-plus-background hypothesis the new higgs is assumed to be produced.
- ▶ a global test-statistic $X(m_h) = \mathcal{L}(s(m_h))/\mathcal{L}(0)$ is constructed to discriminate signal and background.
- ▶ the distributions of $X(m_h)$ are normalised to become probability density functions → integrated to be the confidence levels $CL_b(m_h)$ and $CL_{s+b}(m_h)$.
- ▶ the ratio $CL_s(m_h) = CL_{s+b}(m_h)/CL_b(m_h)$ is used to described that the signal confidence one might have obtained in the absence of background.

ILD (International Large Detector)

and full simulation of Signal and SM Background

- new trackers, calorimeters, 3.5T magnetic field, yoke for muon, forward system
- Requirements:
 - Impact parameter resolution: $\sigma_{r\phi} < 5 \oplus 10/(p \ sin^{3/2}\theta)\mu m$
 - Momentum resolution: $\sigma_{1/p_T} < 2 * 10^{-5} \text{ GeV}^{-1}$
 - Energy resolution: $\sigma_E/E = 3 4\%$

The signal MC samples

- ▶ $M_{S^0} = 10, 15, 20, ..., 120 \text{ GeV},$ every 5 GeV step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

The background MC samples:

- 2-fermion (2f^l,2f^h) leptonic/bhabha/hadronic
- 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ▶ SM Higgs, *Higgs*₁₂₅
- $\gamma\gamma$ backgrounds

ISR photon veto

- There is photon return effects in 2f process.
- identify ISR photon by
 - ▶ ISR photon in the central region ($\cos\theta < 0.95$): $E_{central} > 100 \text{ GeV}$
 - ▶ ISR photon in the forward region $(0.95 < \cos\theta < 0.99)$: $E_{\text{forward}} > 60 \text{ GeV}$
 - ISR cone around photon axis: $\cos \alpha = 0.90$
 - Energy ratio inside the ISR photon cone: $\frac{E}{E_{\text{cone}}} = 0.95$

comparing LEP2 and my strategy for searching light scalars

OPAL's strategy

- at least two opposite charged leptons
- ► isolation of lepton tracks, $\alpha_{iso}^1 > 15^\circ$, $\alpha_{iso}^2 > 10^\circ$
- \blacktriangleright find two best leptons $m_{ll} \sim m_Z$
- ▶ invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2] \text{ GeV}$
- $\blacktriangleright \ p_{ll}^Z > 50 \ {\rm GeV}$
- \blacktriangleright polar angle of missing momentum, $|\theta_{mis}|{<}0.95 \text{ for } p_{mis} > 5 \, \mathrm{GeV}$
- acoplanarity
- ISR photon veto

my strategy

- at least two isolated muon, with IsolatedLeptonTagging Processor
- Find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_h$
- Recovery of bremsstrahlung and FSR photons
- ► Reconstruct Z boson mass $M_{\mu\mu} \in [73, 120] \text{ GeV}.$
- $\blacktriangleright ~70~{\rm GeV} > P_T^Z > 10~{\rm GeV}$
- ► the polar angle of the missing momentum, $|\theta_{mis}| < 0.98$, when $E_{mis} > 10 \text{ GeV}$
- ► MVA: $M_{\mu^+\mu^-}$, $cos(\theta_Z)$, $cos(\theta_{\mu^+\mu^-})$, $cos(\theta_{\mu^+})$, $cos(\theta_{\mu^-})$,acoplanarity

► ISR photon veto Yan Wang | Searching for new light scalars at the ILC | July 2, 2018 | 20/20

