Search for Light Scalars Produced in Association with a Z boson at the 250 GeV stage of the ILC

Yan Wang (DESY, IHEP) on behalf of the ILD concept group

ICHEP 2018, Seoul

July 7, 2018

Motivation

The SM-like scalar H^{125} was found in 2012:

 \Rightarrow the real SM Higgs?

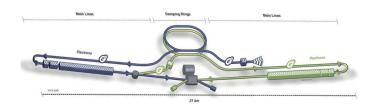
Theoretical:

- Many BSMs predict one or more extra scalars.
 - 2HDM, NMSSM, Randall Sundrum model ...
- lacktriangle a scalar S^0 lighter than 125 GeV is well motivated.

Experimental:

- ► LHC/LEP(*) constraints rely on the model details:
 - ► CP, mass hierarchy, couplings, etc.
- precise constraints are necessary.

- many models.
- * many parameters.
- very weak couplings


Refer to studies at LHC:

Somnath, Junichi, Chayani's talks in the Higgs session.

ILC — The International Linear Collider

- ILC properties:
 - $ightharpoonup e^+e^-$ collider, with polarized beams (e^- : \pm 0.8, e^+ : \mp 0.3).
- ▶ ILC running scenario for about 20 years:
 - ▶ The first stage ILC@250 o $\sqrt{s}=$ 250 GeV and $\int Ldt=2000\,{
 m fb}^{-1}$
 - Energy-upgradable
 - \blacktriangleright $\sqrt{s}=350$ GeV and $\int Ldt=200\,{\rm fb}^{-1}$
 - \blacktriangleright $\sqrt{s} = 500$ GeV and $\int Ldt = 4000 \, \mathrm{fb}^{-1}$
 - upgradable to 1 TeV.
- Construction under political consideration in Japan.

Comparing LEP/LHC and ILC

lacktriangle comparing with LEP: ILC is sensitive to lighter scalars with smaller S^0ZZ coupling.

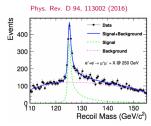
	LEP	ILC	improvement	
$\max \sqrt{s} \; (GeV)$	189-209	250		
m_h region (GeV)	<115	<160		
luminosity	totally $\sim\!\!2.5~{ m fb}^{-1}$	$2000 \; \mathrm{fb}^{-1}$	recoil mass	
polarization	×	\checkmark	angle correlation	
detector $\texttt{e.g.} \sigma_{1/p_T}$	$6\times 10^{-4}\mathrm{GeV}^{-1}$	$2\times 10^{-5}\mathrm{GeV}^{-1}$	resolution	
search channels	$2b2q,2b2\nu,2b2l,\ \tau\tau qq$	model independent		

Phys.: Conf. Ser. 110 042030

- comparing with LHC
 - \blacktriangleright LHC, complex initial states and backgrounds, $S^0 \to \gamma \gamma/ZZ...$ channel, large uncertanties.
 - ▶ ILC, e^+e^- well known initial states, clean environment, model-independent.

The Recoil Method on SM Higgs at ILC

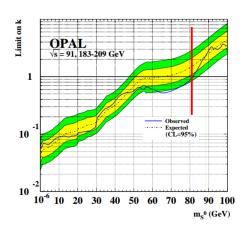
 e^+e^- collider \to know the initial states behaviour \to recoil technique \to model independence


Higgsstrahlung process $e^+e^- \to Z + H^{125}/S^0$

- $M_{rec}^2 = (\sqrt{s} E_{\mu\mu})^2 |\vec{p}_{\mu\mu}|^2$
- $M_{\mu\mu} \sim M_Z$, $M_{rec} \sim M_{H^{125}/S^0}$

SM
$$H^{125}$$
 recoil mass distribution (ILD)

the same method on light scalar searching, SM $H \rightarrow$ a lighter S^0 .



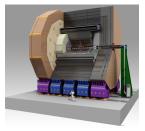
The Recoil Results at LEP

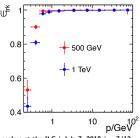
LEP results (CERN-EP-2002-032):

- ▶ the OPAL detector
- Decay-mode independent searches for new scalar bosons
- energy & luminosity:
 - ▶ 91.2 GeV and 0.115 fb⁻¹ at LEP1
 - ► 161 to 202 GeV and **0.662** fb⁻¹ at LEP2.
- light higgs mass: 10 keV 100 GeV

$$k = \frac{\sigma_{S^0 Z}}{\sigma_{H_{\text{SM}} Z}(m_{H_{SM}} = m_{S^0})}$$

ILD (International Large Detector) and Full Simulation of Signal and SM Background

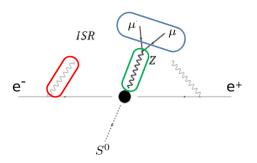



- optimized for particle flow
- Momentum resolution: $\sigma_{1/p_T} < 2*10^{-5} \text{ GeV}^{-1}$
- excellent tracking performance

The signal MC samples

- $M_{S^0} = 10, 15, 20, ..., 120 \, {\rm GeV},$ every $5 \, {\rm GeV}$ step.
- $ightharpoonup S^0$ decay \Rightarrow same as SM H^{125} .

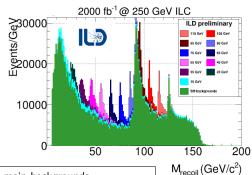
Full SM backgrounds, including H^{125} .



Analysis Flow

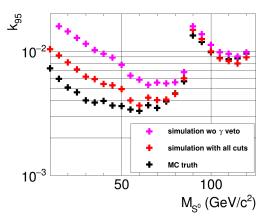
Principle: using the smallest amount of information of S^0 decay.

- \blacktriangleright a pair of isolated muon, with opposite charges. \Rightarrow reconstructing four momentums.
- using observables rely on the muons (and reconstructed Z boson).
 (invariant mass, open angles ...)

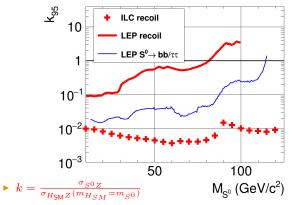


ISR photons may undermine S^0 recoil distribution. \Rightarrow photon veto

Recoil Mass Distribution


- recoil mass distribution for different M_{S^0} .
- ▶ 2000 fb⁻¹, ILC@250. $P(e^-, e^+) = (\pm 80\%, \pm 30\%).$

mass region	main backgrounds			
$125 > M_{S^0} > M_Z$	$e^+e^- \to \mu^+\mu^- f\bar{f}, ZH^{125} \to \mu^+\mu^- H^{125}$			
$M_{S^0} \sim M_Z$	$e^+e^- \to \mu^+\mu^-, ZH^{125} \to \mu^+\mu^-H^{125}$			
$M_Z > M_{S^0} > 40$	$e^+e^- \to \mu^+\mu^-, e^+e^- \to \mu^+\mu^-$			
$40 > M_{S^0}$	$e^+e^- \rightarrow \mu^+\mu^-$			


Impact of Detector Resolution and Photon Veto

- ▶ 95% CL upper bounds on scale factor of cross section with likelihood methods
- ▶ different in the low mass region \rightarrow ISR photons.

Comparing with LEP

Refer to the ILC theoretical prediction, extrapolated from the LEP measurements.

P.Drechsel etc.
arXiv:1801.09662

- ▶ LEP recoil: LEP2 data from 161 GeV to 202 GeV, combined LEP1 data.
- ▶ LEP $S^0 \to bb/\tau\tau$: exclusive reconstruction of Z and h decay.
- ▶ 1-2 orders of magnitude improvement over LEP's recoil results → discovery opportunity!
- ▶ when $100 \ge M_h \ge 50$ GeV, trend is similar with LEP.

Conclusion

- A lighter higgs is favored in many BSM models
 - ▶ 2HDM, NMSSM, RS ...
- A model-independent analysis has been performed.
 - mass range [10, 120) GeV
 - ▶ 2000 fb⁻¹, when $\sqrt{s} = 250$ GeV.
- Sensitivity for k_{95} (cross section scale factor)
 - $k_{95} \in (0.003-0.02).$
 - ▶ 1-2 orders of magnitude more sensitive than LEP covering substantial new phase space

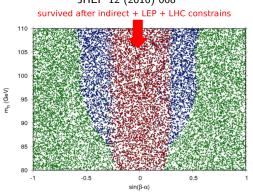
Backup Slides

Theoretical Motivation

The higgs boson found at 2012: the SM Higgs?

Many BSMs predict one or more extra scalars:

- ► General Two Higgs Doublet Model (2HDM...)
 - with 2 scalars: h, H, 1 pheudoscalar A, 2 charged particles
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 - with 3 scalars: h1, h2, h3, 2 pheudoscalars A1, A2, 2 charged particles
- Randall Sundrum model
 - a radion

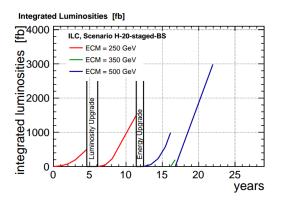

In these models, a scalar lighter than $125 \; \text{GeV}$ is well motivated.

LHC Higgs boson rather SM-like \rightarrow new higgs coupling to Z boson strongly suppressed. Could we find it at the ILC?

Past Experiment Results parameters

LEP SM Higgs searches: constrain other extra scalars, whose properties, especially decay profile, are similar as SM higgs's.

LEP/LHC constraints rely on the model details: CP, mass hierarchy, couplings, etc. JHEP 12 (2016) 068



2HDM, Type I: $tan\beta > 1.2, \\ m_A > 60 \text{ GeV}, \\ m_{H^\pm} > 80 \text{ GeV} \ ..$

ILC run plan

- ▶ totally 22 years

ILD (International Large Detector)

and full simulation of Signal and SM Background

- ► new trackers, calorimeters, 3.5T magnetic field, yoke for muon, forward system
- Requirements:
 - Impact parameter resolution: $\sigma_{r\phi} < 5 \oplus 10/(p \ sin^{3/2}\theta)\mu m$
 - Momentum resolution: $\sigma_{1/n_T} < 2*10^{-5} \text{ GeV}^{-1}$
 - Energy resolution: $\sigma_E/E = 3-4\%$

The signal MC samples

- $M_{S^0} = 10, 15, 20, ..., 120 \,\text{GeV},$ every $5 \,\text{GeV}$ step.
- decay branch ratios are the same as the 125 GeV SM Higgs boson.

The background MC samples:

- ▶ 2-fermion $(2f^l, 2f^h)$ leptonic/bhabha/hadronic
- ► 4-fermion (4f^l, 4f^{sl}, 4f^h) leptonic/semi-lepton/hadronic
- ► SM Higgs, Higgs₁₂₅

18/12

Analysis flow

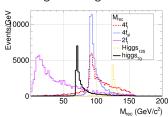
Principle: using the smallest amount of information of S_0 decay.

$$\chi^2(M_{\mu^+\mu^-},M_{\rm rec}) = \frac{(M_{\mu^+\mu^-}-M_Z)^2}{\sigma_{M_{\mu^+\mu^-}}^2} + \frac{(M_{\rm rec}-M_h)^2}{\sigma_{M_{\rm rec}}^2}.$$

$$02 \qquad M_Z \in [73,120] \text{ GeV}$$

$$03 \qquad P_T^Z \in [10,128-4\times\frac{M_h}{10}] \text{ GeV}$$

$$04 \qquad \cos\theta_{\rm mis} < 0.98 \text{ when E}_{\rm mis} > 10 \text{ GeV}$$


$$05 \qquad \text{Multi-Variate Analysis: angles}$$

cut effi

Four regions.

mass region	main backgrounds				
$125 > M_{S^0} > M_Z$	$4f_{zz}^{sl}, 4f_{zz/ww}$, SM Higgs				
$M_{S^0} \sim M_Z$	$4f_{zz}^{l}, 4f_{zz}^{sl}, 4f_{zz/ww}$, SM Higgs				
$M_Z > M_{S^0} > 40$	$2f_l$, $4f_{zz}$, $4f_{zz/ww}$				
$40 > M_{S^0}$	$2f_l$				
•					

signal & bkgs

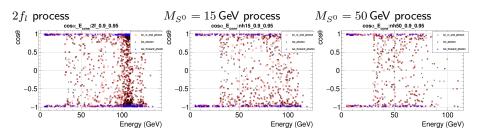
Cut efficiencies for different masses:

$\int Ldt = 2000 \text{fb}^{-1}$	new higgs	$4f_l$	$4f_{sl}$	$2f_l$	total bk	cut efficiency	significance
$m_h = 115 \text{ GeV}$	17419.6	61033.9	53869.4	13877.7	128781	0.67	45.56
$m_h = 90 \text{ GeV}$	22198.2	63210.7	74563	18514.2	156288	0.59	52.54
$m_h = 70 \text{ GeV}$	26841.3	51671.6	60357.7	37166.6	149196	0.57	63.97
$m_h = 50 \text{ GeV}$	30493.5	46128.1	54372.8	80074.4	180575	0.54	66.37
$m_h = 30 \text{ GeV}$	33843.7	51206.6	55743.3	213184	320134	0.49	56.88

$$\text{significance} = \frac{S}{\sqrt{S+B}}, \quad \text{and } S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L}, \quad \text{ where } \kappa_{gZZ} = 1$$

and
$$S = \kappa_{gZZ}^2 \times \sigma_{h\mu\mu}^{m_h} \times \mathfrak{L},$$

Yan Wang \mid Searching for new light scalars at the ILC \mid July 7, 2018 \mid $\;$ 20/12



likelihood method

- \triangleright 2 σ exclusion limits with a bin-by-bin comparison between the signal and backgrounds recoil mass histograms.
- ▶ the background-only hypothesis no new higgs in the investigated mass range.
- ▶ the signal-plus-background hypothesis the new higgs is assumed to be produced.
- ▶ a global test-statistic $X(m_h) = \mathcal{L}(s(m_h))/\mathcal{L}(0)$ is constructed to discriminate signal and background.
- ▶ the distributions of $X(m_h)$ are normalised to become probability density functions \rightarrow integrated to be the confidence levels $CL_b(m_h)$ and $CL_{s+b}(m_h)$.
- ▶ the ratio $CL_s(m_h) = CL_{s+b}(m_h)/CL_b(m_h)$ is used to described that the signal confidence one might have obtained in the absence of background.

ISR photon veto

- ▶ There is photon return effects in 2f process.
- identify ISR photon by
 - ▶ ISR photon in the central region ($\cos \theta < 0.95$): $E_{\text{central}} > 100 \, \text{GeV}$
 - ▶ ISR photon in the forward region (0.95 < cos θ < 0.99): $E_{\text{forward}} > 60 \, \text{GeV}$
 - ▶ ISR cone around photon axis: $\cos \alpha = 0.90$
 - \blacktriangleright Energy ratio inside the ISR photon cone: $\frac{E}{E_{\rm cone}}=0.95$

22/12

comparing LEP2 and my strategy for searching light scalars

OPAL's strategy

- at least two opposite charged leptons
- isolation of lepton tracks, $\alpha_{iso}^1>15^\circ$, $\alpha_{iso}^2>10^\circ$
- find two best leptons $m_{ll} \sim m_Z$
- invariant mass of the lepton pair, $M_{\mu\mu} \in [81.2, 101.2] \, \mathrm{GeV}$
- $p_{ll}^Z > 50 \, \mathrm{GeV}$
- \blacktriangleright polar angle of missing momentum, $|\theta_{mis}|{<}0.95 \text{ for } p_{mis} > 5 \text{ GeV}$
- acoplanarity
- ▶ ISR photon veto

my strategy

- at least two isolated muon, with IsolatedLeptonTagging Processor
- ▶ find two best leptons, $m_{ll} \sim m_Z$ and $m_{rec} \sim m_h$
- Recovery of bremsstrahlung and FSR photons
- Reconstruct Z boson mass $M_{\mu\mu} \in [73, 120]$ GeV.
- $\blacktriangleright 70\,\mathrm{GeV} > P_T^Z > 10\,\mathrm{GeV}$
- by the polar angle of the missing momentum, $|\theta_{mis}| < 0.98$, when $E_{mis} > 10\,{\rm GeV}$
- MVA: $M_{\mu^+\mu^-}$, $cos(\theta_Z)$, $cos(\theta_{\mu^+\mu^-})$, $cos(\theta_{\mu^+})$, $cos(\theta_{\mu^-})$, acoplanarity
- ► ISR photon veto
 Yan Wang | Searching for new light scalars at the ILC | July 7, 2018 | 23/12