Phenomenology of Composite 2 Higgs Doublet Models

arXiv: 1803.01865 [hep-ph]

共同研究者: S. D. Curtis, L. D. Rose, A. Tesi (Florence)

S. Moretti (Southampton)

ILC夏の合宿

2018年9月9日,国民宿舎大城

Extended Higgs sectors with non-standard κ_V

arXiv: 1808.10152 [hep-ph]

共同研究者: Cheng-Wei Chiang (国立台湾大学)

ILC夏の合宿 2018年9月9日,国民宿舎大城

ファインマンの言葉

It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong.

It doesn't matter how exotic your theory is, It doesn't matter how foolish you are. If it agrees with experiment, it's correct.

Parameter	(a) no BSM
κ _Z	1.07 ± 0.10
κ_W	1.07 ± 0.11
КЪ	$0.97^{+0.24}_{-0.22}$
K _t	$1.09^{+0.15}_{-0.14}$
κ_{τ}	$1.02^{+0.17}_{-0.16}$
κ_{γ}	$1.02^{+0.09}_{-0.12}$
к _g	$1.00^{+0.12}_{-0.11}$
B _{BSM}	-

ATLAS-CONF-2018-31 (13 TeV, 80/fb) CMS-PAS-HIG-17-031 (13 TeV, 36/fb)

$BR_{inv.} = 0$				
	Uncertainty			
Parameter	Best fit	Stat.	Syst.	
κ _Z	$0.99 \begin{array}{c} +0.11 \\ -0.11 \\ (\begin{array}{c} +0.11 \\ -0.11 \end{array}) \end{array}$	$^{+0.09}_{-0.09} \\ (^{+0.09}_{-0.09})$	$^{+0.06}_{\substack{-0.06\\(+0.06\\-0.06)}}$	
κ _W	$1.12 \begin{array}{c} +0.13 \\ -0.19 \\ (\begin{array}{c} +0.12 \\ -0.12 \end{array}) \end{array}$	$^{+0.10}_{\substack{-0.18\\(+0.09\\-0.09)}}$	$^{+0.08}_{-0.07} \\ (^{+0.07}_{-0.07})$	
κ _t	$\stackrel{+0.14}{\stackrel{-0.14}{}_{\begin{array}{c}-0.14\\ \begin{array}{c}+0.14\\ \end{array}}}_{\left(\begin{array}{c}+0.14\\ -0.15\end{array}\right)}$	$^{+0.08}_{-0.08} \\ (^{+0.08}_{-0.09})$	$^{+0.12}_{\substack{-0.12\\(+0.12\\-0.12)}}$	
κ_{τ}	$1.01 \begin{array}{c} +0.17 \\ -0.18 \\ (\begin{array}{c} +0.16 \\ -0.15 \end{array}) \end{array}$	$^{+0.11}_{\substack{-0.15\\(+0.11\\-0.11})}$	$^{+0.12}_{\substack{-0.09\\(+0.11\\-0.11})}$	
$\kappa_{ m b}$	${\stackrel{+0.27}{_{-0.33}}}\atop{\stackrel{+0.25}{_{-0.23}}}$	$^{+0.19}_{\substack{-0.30\\(+0.19\\-0.17})}$	$^{+0.19}_{\substack{-0.14\\ (+0.17\\ -0.15)}}$	
κ _g	$1.14 \begin{array}{c} +0.15 \\ -0.13 \\ (+0.14 \\ -0.12 \end{array})$	$^{+0.10}_{\substack{-0.09\\(+0.10\\-0.09)}}$	$^{+0.11}_{\substack{-0.09\\(+0.10\\-0.09)}}$	
κ_{γ}	$1.07 \begin{array}{c} +0.15 \\ -0.18 \\ (+0.12 \\ -0.12 \end{array})$	$^{+0.10}_{-0.17} \\ (^{+0.10}_{-0.10})$	$^{+0.11}_{\substack{-0.07\\(+0.07\\-0.07)}}$	

ATLAS-CONF-2018-31 (13 TeV, 80/fb)

CMS-PAS-HIG-17-031 (13 TeV, 36/fb)

ATLAS-CONF-2018-31 (13 TeV, 80/fb)

CMS-PAS-HIG-17-031 (13 TeV, 36/fb)

_		$BR_{inv.} = 0$			
Parameter	(a) no BSM			Uncer	rtainty
	(1) 10 2 211	Parameter	Best fit	Stat.	Syst.
KΖ	1.07 ± 0.10	κ _Z	$0.99 \begin{array}{c} +0.11 \\ -0.11 \\ (+0.11 \\ -0.11 \end{array})$	$^{+0.09}_{-0.09} \\ (^{+0.09}_{-0.09})$	$^{+0.06}_{-0.06} \\ (^{+0.06}_{-0.06})$
κ_W	1.07 ± 0.11	κ _W	$1.12 \begin{array}{c} +0.13 \\ -0.19 \\ \left(\begin{array}{c} +0.12 \\ -0.12 \end{array} \right) \end{array}$	$^{+0.10}_{\begin{array}{c}-0.18\\(+0.09\\-0.09\end{array})}$	$^{+0.08}_{-0.07} \\ (^{+0.07}_{-0.07})$
КЪ	$0.97^{+0.24}_{-0.22}$	κ _t	$1.09 \begin{array}{c} +0.14 \\ -0.14 \\ \left(\begin{array}{c} +0.14 \\ -0.15 \end{array} \right)$	$^{+0.08}_{-0.08} \\ (^{+0.08}_{-0.09})$	$^{+0.12}_{\substack{-0.12\\ (+0.12\\ -0.12)}}$
κ _t Κτ	$1.09_{-0.14}$ $1.02^{+0.17}$	$\kappa_{ au}$	$1.01 \begin{array}{c} +0.17 \\ -0.18 \\ \left(\begin{array}{c} +0.16 \\ -0.15 \end{array} \right) \end{array}$	$^{+0.11}_{\substack{-0.15\\(+0.11\\-0.11})}$	$^{+0.12}_{-0.09} \\ (^{+0.11}_{-0.11})$
κγ	$1.02_{-0.16}^{+0.09}$ $1.02_{-0.12}^{+0.09}$	κ _b	$1.10 \begin{array}{c} +0.27 \\ -0.33 \\ (+0.25 \\ -0.23 \end{array})$	$^{+0.19}_{-0.30} \\ (^{+0.19}_{-0.17})$	$^{+0.19}_{\substack{-0.14\\ (+0.17\\ -0.15)}}$

全ての к は誤差の範囲でSM(к = 1)とコンシステント

ATLAS-CONF-2018-31 (13 TeV, 80/fb)

$BR_{inv.} = 0$ Parameter (a) no BSM Uncertainty Parameter Best fit Stat. Syst. $0.99 \ ^{+0.11}_{-0.11}$ +0.09+0.06 1.07 ± 0.10 KΖ -0.09-0.06 $\kappa_{\rm Z}$ $\binom{+0.11}{-0.11}$ (+0.09) $\binom{+0.06}{-0.06}$ (-0.09) 1.07 ± 0.11 $1.12 \begin{array}{c} +0.13 \\ -0.19 \end{array}$ +0.10+0.08KW -0.07-0.18κw $\binom{+0.12}{-0.12}$ $\binom{+0.07}{-0.07}$ (+0.09)-0.09 $0.97^{+0.24}_{-0.22}$ K_b $1.09 \ ^{+0.14}_{-0.14}$ +0.08+0.12-0.08-0.12 κ_{t} $\binom{+0.14}{-0.15}$ $\binom{+0.08}{-0.09}$ $\binom{+0.12}{-0.12}$ $1.09^{+0.15}$ K_t -0.14 $1.01 \ ^{+0.17}_{-0.18}$ $^{+0.11}_{-0.15}$ +0.12-0.09 κ_{τ} $\binom{+0.16}{-0.15}$ $\binom{+0.11}{-0.11}$ $\binom{+0.11}{-0.11}$ $1.02^{+0.17}$ K_{τ} -0.16 $1.10 \ _{-0.33}^{+0.27}$ +0.19+0.19 $^{-0.14}_{(-0.17)}$ -0.30 $1.02^{+0.09}$ $\kappa_{\rm b}$ $\binom{+0.19}{-0.17}$ $\binom{+0.25}{-0.23}$ κ_{γ} -0.12

中心値は $\kappa_v > 1$ あるいは $\kappa_w \neq \kappa_z$ を示している。

CMS-PAS-HIG-17-031 (13 TeV, 36/fb)

ATLAS-CONF-2018-31 (13 TeV, 80/fb)

$BR_{inv.} = 0$ Parameter (a) no BSM Uncertainty Parameter Best fit Stat. $0.99 \ ^{+0.11}_{-0.11}$ +0.09 1.07 ± 0.10 KΖ -0.09 $\kappa_{\rm Z}$ $\binom{+0.11}{-0.11}$ (+0.09)(-0.09) 1.07 ± 0.11 $1.12 \begin{array}{c} +0.13 \\ -0.19 \end{array}$ +0.10KW -0.18κw $\binom{+0.12}{-0.12}$ (+0.09)-0.09 $0.97^{+0.24}_{-0.22}$ KЪ $1.09 \ ^{+0.14}_{-0.14}$ +0.08-0.08 κ_{t} $\binom{+0.14}{-0.15}$ $\binom{+0.08}{-0.09}$ $1.09^{+0.15}_{-0.14}$ Kt $1.01 \ ^{+0.17}_{-0.18}$ $^{+0.11}_{-0.15}$ κ_{τ} $\binom{+0.16}{-0.15}$ $\binom{+0.11}{-0.11}$ +0.17-0.161.02 K_{τ} $1.10 \ _{-0.33}^{+0.27}$ +0.19-0.30 $1.02^{+0.09}_{-0.12}$ $\kappa_{\rm b}$ $\binom{+0.25}{-0.23}$ $\binom{+0.19}{-0.17}$ κ_{γ}

これが本当なら大事件!!

CMS-PAS-HIG-17-031 (13 TeV, 36/fb)

Syst.

+0.06

-0.06

 $\binom{+0.06}{-0.06}$

+0.08

-0.07

 $\binom{+0.07}{-0.07}$

+0.12

-0.12

 $\binom{+0.12}{-0.12}$

+0.12-0.09

 $\binom{+0.11}{-0.11}$

+0.19

 $(+0.14)^{(+0.17)}$

(-0.15)

ロイントロダクション

□ ゲージ結合によるヒッグスセクターの分類

ロ $K_W \neq K_Z$ を導く模型とILC実験での検証

□ まとめ

ヒッグス場の分類

ヒッグス場の分類

電弱ローパラメータ(p)への寄与

SVV結合への寄与

□ ρ = 1 (ツリーレベル)を要請すると、ヒッグスセクターの構造は

- φ のみで構成 (常にκ_w = κ_z)
- φ と複数個のXで構成 (κ_w ≠ κ_zも可能)

のように分類できる。

□ κ_v > 1は、どちらのシナリオでも実現可能だが、現象論的な問題を

考慮すると後者のみ実現可能。

 $\rho_{tree} = 1 を満たす拡張ヒッグス模型$

 $a = 1, \ldots, N$

□ ヒッグス2重項場 Φ ~ (1/2,1/2) + ヒッグス多重項場 X_a ~ (T_a, Y_a)

$$\rho_{\text{tree}} = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{v_{\Phi}^2 + 2\sum_b v_b^2 [T_b(T_b + 1) - Y_b^2]}{v_{\Phi}^2 + 4\sum_a v_a^2 Y_a^2} \qquad \begin{array}{c} \mathsf{T}_{\mathsf{a}} : \ (\texttt{\texttt{\#}}) \ \texttt{BSM} \\ \mathsf{Y}_{\mathsf{a}} : \ (\texttt{\texttt{\#}}) \ \texttt{BSM} \\ \mathsf{Q}_{\mathsf{a}} = \mathsf{T}_{\mathsf{a}} + \mathsf{Y}_{\mathsf{a}} \end{array}$$

$$\rho_{\text{tree}} = 1$$

$$\sum_{a} v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0$$

ロ 各々のX_aに対して上式を要請: $(T_a,Y_a) \sim (0,0), \ (\frac{1}{2},\frac{1}{2}), \ (3,2), \ldots$ = φ (それ以外=X)

□ 全体の和(Σ_a)に対して要請: Xを導入する場合、少なくとも2個以上のXが必要

■ ヒッグスセクター : Φ ~ (1/2,1/2) + X₁ ~ (T₁, Y₁) + X₂ ~ (T₂, Y₂)

$$\rho_{\text{tree}} = 1 \quad \Longrightarrow \quad r = \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1 + 1) - 3Y_1^2}{T_2(T_2 + 1) - 3Y_2^2} \quad \left(\sum_a v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0 \right)$$

■ ヒッグスセクター : Φ ~ (1/2,1/2) + X₁ ~ (T₁, Y₁) + X₂ ~ (T₂, Y₂)

$$\rho_{\text{tree}} = 1 \quad \Longrightarrow \quad r = \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1 + 1) - 3Y_1^2}{T_2(T_2 + 1) - 3Y_2^2} \quad \left(\sum_a v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0 \right)$$

□ 真空期待値:
$$v^2 = v_{\Phi}^2 + \xi^2 v_1^2$$

 $\tan \beta = \frac{v_{\Phi}}{\xi v_1}$ $\xi^2 = 4(Y_1^2 + rY_2^2)$

$$\rho_{\text{tree}} = 1 \quad \Longrightarrow \quad r = \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1 + 1) - 3Y_1^2}{T_2(T_2 + 1) - 3Y_2^2} \quad \left(\sum_a v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0 \right)$$

$$\rho_{\text{tree}} = 1 \quad \Longrightarrow \quad r = \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1 + 1) - 3Y_1^2}{T_2(T_2 + 1) - 3Y_2^2} \quad \left(\sum_a v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0 \right)$$

$$\rho_{\text{tree}} = 1 \quad \Longrightarrow \quad r = \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1 + 1) - 3Y_1^2}{T_2(T_2 + 1) - 3Y_2^2} \quad \left(\sum_a v_a^2 [T_a(T_a + 1) - 3Y_a^2] = 0 \right)$$

□ ρ_{tree} = 1 (r > 0): ρ に対して正に効く<X>と負に効く<X>の組み合わせが必要

15個のシナリオ

Chiang, Yagyu, arXiv: 1808.10152 [hep-ph]

(T_1, Y_1)	(T_2, Y_2)	r	ξ^2	v_1^{\max}
(1,1)	(1,0)	1/2	4	118
(3/2,1/2)	(1,1)	3	13	65
(3/2, 3/2)	(1,0)	3/2	9	79
(3/2, 3/2)	(3/2, 1/2)	1	10	75
(2,0)	(1,1)	6	24	48
(2,0)	(3/2, 3/2)	2	18	56
(2,1)	(1,1)	3	16	59
(2,1)	(3/2, 3/2)	1	13	65
(2,2)	(2,1)	2	24	48
(5/2, 1/2)	(1, 1)	8	33	41
(5/2, 1/2)	(3/2, 3/2)	8/3	25	47
(5/2, 3/2)	(1, 1)	2	17	57
(5/2, 3/2)	(3/2, 3/2)	2/3	15	61
(3,0)	(1,1)	12	48	34
(3,0)	(3/2, 3/2)	4	36	39

Georgi-Machacek 模型

ロイントロダクション

□ ゲージ結合によるヒッグスセクターの分類

□ κ_w ≠ κ_z を導く模型とILC実験での検証

□ まとめ

ロ ヒッグスセクター: Φ ~ (1/2,1/2) + X₁ ~ (1,1) + X₂ ~ (1,0)

 $r = 1/2, \xi = 2$

 $r = 1/2, \xi = 2$

□ カストディアル対称性をポテンシャルに課す場合

ロ ヒッグスセクター: Φ ~ (1/2,1/2) + X₁ ~ (1,1) + X₂ ~ (1,0)
 r = 1/2, ξ = 2
 Δ =
$$\begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^{--} & \xi^- & \chi^0 \end{pmatrix}$$
 X₁^c X₂ X₁

□ ヒッグスセクター: Φ ~ (1/2,1/2) + X₁ ~ (1,1) + X₂ ~ (1,0)
r = 1/2, ξ = 2
□ カストディアル対称性をポテンシャルに課す場合
→ CP-evenヒッグスの混合に予言が現れる

$$X_1^c$$
 X_2 X_1

$$R_{11}=c_lpha,\ R_{21}=-\sqrt{rac{2}{3}}s_lpha,\ R_{31}=-\sqrt{rac{1}{3}}s_lpha$$

□ ヒッグスセクター: Φ ~ (1/2,1/2) + X₁ ~ (1,1) + X₂ ~ (1,0)
r = 1/2, ξ = 2
□ カストディアル対称性をポテンシャルに課す場合
→ CP-evenヒッグスの混合に予言が現れる

$$\chi_1^c$$
 X₂ X₁

$$R_{11}=c_lpha,\;R_{21}=-\sqrt{rac{2}{3}}s_lpha,\;R_{31}=-\sqrt{rac{1}{3}}s_lpha$$

$$\begin{split} \kappa_W &= R_{11}s_\beta + (R_{21}+\sqrt{2}R_{31})c_\beta \\ \kappa_Z &= R_{11}s_\beta + 2R_{21}c_\beta \end{split}$$

□ ヒッグスセクター: Φ ~ (1/2,1/2) + X₁ ~ (1,1) + X₂ ~ (1,0)
r = 1/2, ξ = 2
□ カストディアル対称性をポテンシャルに課す場合
$$\Delta = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^- & \xi^- & \chi^0 \end{pmatrix}$$

 \rightarrow CP-evenヒッグスの混合に予言が現れる $X_1^c & X_2 & X_1$
 $R_{11} = c_{\alpha}, R_{21} = -\sqrt{\frac{2}{3}}s_{\alpha}, R_{31} = -\sqrt{\frac{1}{3}}s_{\alpha}$
 $\kappa_W = R_{11}s_{\beta} + (R_{21} + \sqrt{2}R_{31})c_{\beta}$
 $\kappa_Z = R_{11}s_{\beta} + 2R_{21}c_{\beta}$
 $\beta_Z = R_{11}s_{\beta} + 2R_{21}c_{\beta}$
 $\beta_Z = R_{11}s_{\beta} + 2R_{21}c_{\beta}$
 $\kappa_V > 1 (dy) - U = U = U = U$

1ループレベルでの к_v

Chiang, Kuo, KY, PRD98 (2018), 013008

カストディアル対称性無しの場合

Chiang, Yagyu, arXiv: 1808.10152 [hep-ph]

$$e^+e^- \rightarrow W^+W^-h$$

$$|\mathcal{M}|^2 = |\mathcal{M}_W|^2 + |\mathcal{M}_Z|^2 + (\mathcal{M}_W \mathcal{M}_Z^* + h.c.)$$

 $\kappa_W \ge \kappa_Z の相対符号にも感度を持つ$

Chiang, He, Li, JHEP08, 126 (2018)

□ √s ~ 500 GeVで断面積が最大

□ 偏極ビームで10 fb程度

Chiang, He, Li, JHEP08, 126 (2018)

まとめ

□ LHC Run-IIでのh結合の測定結果

Parameter	ATLAS	\mathbf{CMS}	Average
κ_W	1.07 ± 0.10	$1.12\substack{+0.13 \\ -0.19}$	1.08 ± 0.08
κ_Z	1.07 ± 0.10	0.99 ± 0.11	1.03 ± 0.07

□ ρ_{tree} = 1 を満たす拡張ヒッグス模型

 $(T,Y) \sim (0,0), (1/2,1/2), (3,2) : \kappa_V < 1, \kappa_W = \kappa_Z$

これ以外のヒッグス場2個以上: $\kappa_V > 1$, $\kappa_W \neq \kappa_Z$ (例: Georgi-Machacek 模型)

□ 摂動ユニタリー性、大局的U(1)、ランダウポールを考慮すると、

15通りのĸ_w ≠ к_zを出す模型が構成可能

□ ILC実験において、 $e^+e^- \rightarrow W^+W^-h$ 過程を見れば、相対符号を含めて κ_w , κ_7

を測定できる可能性がある。