SDHCAL energy reconstruction by using convnet

Bo Li (IPNL)

SDHCAL meeting July 2

Energy resolution

Improving the energy resolution of SDHCAL by software is one of direction we can pursue to achieve better jet energy resolution.

Which way

Variables that relate to the shower energy

- hit number
- energy density at a local area
- cluster shape/topology

A way to take them into account once and for all ?

- . . .

Convnet

In a convnet (convolutional neutral network), neuron in one layer is only connected by the neurons in small region of previous layer

from Deep Learning with Python

Pixels of a digit as input of convnets

Spatial hierarchy of cat

"cat"

Ð

- Convolution layers learn local patterns
- The patterns they learn are translation invariant
- It can learn spatial hierarchies of patterns

Activation on layer

http://cs231n.github.io/convolutional-networks

In this sense, convnet is not 'black box' any more

So, convnet is probably our right choice for energy reconstruction (regression)

Data preprocessing

Simulation:

- training samples: K0Long, 2 100 GeV
- test samples: K0Long, 10, 20, ..., 80 GeV
- ILD_I5_o2_v02 (SDHCAL), endcap
- ILCSoft v01-19-05

Hit map of 1k events

35000

hitPosX:hitPosY {hitPosX>-60&&hitPosX<420&&hitPosY>1160&&hitPosY<1640}

Building convnets

- I tried to build a convnet model by Keras 2.2.0 (Ubuntu-16.04, cuda-9.0, tensorflow-1.8.0)

Layer (type)	Output	Shape	Param #
conv3d_1 (Conv3D)	(None,	23, 23, 23, 16)	144
average_pooling3d_1 (Average	(None,	11, 11, 11, 16)	0
conv3d_2 (Conv3D)	(None,	10, 10, 10, 32)	4128
average_pooling3d_2 (Average	(None,	5, 5, 5, 32)	0
conv3d_3 (Conv3D)	(None,	4, 4, 4, 32)	8224
flatten_1 (Flatten)	(None,	2048)	0
dense_1 (Dense)	(None,	32)	65568
dense_2 (Dense)	(None,	1)	33
Total params: 78,097 Trainable params: 78,097 Non-trainable params: 0			

- Training network on a GeForce GTX 1080 Ti GPU

Loss and error

The loss is a function of difference between prediction of network and the target

The training is going to be overfitting after 100 epochs

Reconstructed energy of test samples

9

Performance

10

Summary

- It is proposed that convnet can be used for SDHCAL energy reconstruction
- A very naive convnet model is built, but its performance on energy reconstruction is not so bad
- Issues:
- overfitting
- 'thorn' in the reconstructed energy
- understand what the convnet learned from data
- find a good convnet model for our case