Light Flavor Branching Fractions in e⁺e⁻→qq

ILD Software & Analysis Meeting

Paul Malek Hamburg, 25.07.2018

Introduction

- Idea: Leading particle flavor content correlated to jet flavor → tag light flavor jets by identifying highest momentum hadrons above a threshold momentum.
- Original method developed for LEP experiments.
- Problem: Tags are not unambiguous due to additional production of u, d and s quarks from the QCD sea.
- Solution: Measure hadrons containing different flavors to resolve ambiguities (π^{\pm} , K^{\pm} , p, K_S^0 , Λ).
- Observables: Number of jets N_i tagged with hadron i and number of double tagged events N_{ij} .
- Use standard b and c tagging techniques to determine and subtract heavy flavor content.

$$\frac{N_i}{N_{had}} = 2 \times \sum_q \eta_q^i R_q$$

$$\frac{N_{ij}}{N_{had}} = (2 - \delta_{ij}) \times \sum_{q} \rho_{ij} \eta_q^i \eta_q^j R_q$$

- $\eta_q^i = \frac{N_{q \to i}}{N_q}$ is the probability that a quark of flavor q creates a leading hadron i.
- $R_q = \frac{\Gamma_{ee \to qq}}{\Gamma_{had}}$ is the branching fraction of $e^+e^- \to q\bar{q}$.
 - Alternative use $R'_q = \frac{R_q}{1 R_c R_b}$
- ρ_{ij} are jet correlation factors.
- N_{had} is the total number of $e^+e^- \rightarrow q\bar{q}$ events.

Additional Assumptions

- Additional assumptions are required to solve the equation system.
- Hadronization Symmetries (K^0 includes K_S^0 and K_L^0):

$$\eta_d^{\pi^{\pm}} = \eta_u^{\pi^{\pm}}$$
 $\eta_d^{K^0} = \eta_u^{K^{\pm}}$
 $\eta_u^{K^0} = \eta_d^{K^{\pm}}$
 $\eta_s^{K^0} = \eta_s^{K^{\pm}}$
 $\eta_u^{\Lambda} = \eta_d^{\Lambda}$

- Are broken by < 2%.
- Normalization of branching fractions:

$$\sum_{q} R_q = 1$$
 or $\sum_{q} R'_q = 1$

• From weak isospin structure: $R_d = R_s$

$$\frac{N_i}{N_{had}} = 2 \times \sum_{q} \eta_q^i R_q$$

$$\frac{N_{ij}}{N_{had}} = (2 - \delta_{ij}) \times \sum_{q} \rho_{ij} \eta_q^i \eta_q^j R_q$$

- $\eta_q^i = \frac{N_{q \to i}}{N_q}$ is the probability that a quark of flavor q creates a leading hadron i.
- $R_q = \frac{\Gamma_{ee \to qq}}{\Gamma_{had}}$ is the branching fraction of $e^+e^- \to q\bar{q}$.
 - Alternative use $R'_q = \frac{R_q}{1 R_c R_b}$
- ρ_{ij} are jet correlation factors.
- N_{had} is the total number of $e^+e^- \rightarrow q\bar{q}$ events.

Data & Event Treatment

- Using DBD data: 2.86 × 10⁶ events.
 - $\sqrt{s} = 250 \text{ GeV}$, Dijet events
- Weighted to 2 ab⁻¹: 119.45×10^6 events.
 - Split (45%, 45%, 5%, 5%) between (+-, -+, ++, --).
- ISR is identified by MC truth and removed.
 - Methods like kinematic fits have been shown to reliably recover ISR.
- Rest of event is boosted into CM system after ISR.
- Event is split into hemispheres by projecting particle momenta onto thrust axis.
- In each hemisphere the particle with the highest momentum (leading particle) is identified.

Data

80 GeV
$$<\sqrt{s_{eff}}<$$
 100 GeV $p_{had}>$ 0.5 $imes\sqrt{s_{eff}}/$ 2

- Event cuts:
 - 80 GeV $<\sqrt{s_{eff}}$ < 100 GeV
 - $\left|\cos\theta_{jet}\right| < 0.8$ for both jets
- Leading particle cuts:
 - $|\cos \theta_{had}| < 0.8$
 - $p_{had} > 0.5 \times \sqrt{s_{eff}}/2$
- Considering π^{\pm} , K^{\pm} , p, K_S^0 , Λ

Particle ID

80 GeV
$$<\sqrt{s_{eff}}<$$
 100 GeV, $p_{had}>$ 0.5 $imes\sqrt{s_{eff}}/$ 2

- K_S^0 and Λ are identified by V0Finder in standard reconstruction.
- No dE/dx PID done in DBD samples.
- Applying toy PID to leading particles based on dE/dx separation power calculated by Uli Einhaus on iLCSoft v01-19-05.

Data

80 GeV
$$<\sqrt{s_{eff}}<$$
 100 GeV $p_{had}>$ 0.5 $imes\sqrt{s_{eff}}/$ 2

- Considering π^{\pm} , K^{\pm} , p, K_S^0 , Λ
- Tagging efficiencies determined from MC.
- Applying tagging efficiencies to reconstructed data:

$$\eta_q^{i,exp} = \sum_j \mathcal{E}_i^j \eta_q^j$$

 Determination of heavy quark contamination in reconstructed samples is cheated with MC truth.

Chi-square Function

The equation system

$$\frac{N_i}{N_{had}} = 2 \times \sum_{q} \eta_q^{i,exp} R_q$$

$$\frac{N_{ij}}{N_{had}} = (2 - \delta_{ij}) \times \sum_{q} \rho_{ij} \eta_q^{i,exp} \eta_q^{j,exp} R_q$$

leads to a chi-square function:

$$\chi^{2} = \sum_{i} \left[\frac{\widetilde{N}_{i} - 2N_{had} \times \sum_{q} \widetilde{\eta}_{q}^{i} R_{q}}{\sqrt{\widetilde{N}_{i}}} \right]^{2} + \sum_{i,i} \left[\frac{N_{ij} - (2 - \delta_{ij}) \times \sum_{q} \rho \eta_{q}^{i,exp} \eta_{q}^{j,exp} R_{q}}{\sqrt{N_{ij}}} \right]^{2}$$

where

$$\widetilde{N}_i = N_i - \sum_j (1 + \delta_{ij}) N_{ij}$$

and

$$\widetilde{\eta}_q^i = \eta_q^{i,exp} - \sum_j \rho \eta_q^{i,exp} \eta_q^{j,exp}$$

are needed to correct for double counting between the single and double tagged samples.

MC shows correlation factors $\rho_{ij} = \rho$ are independent of hadron type for the hadrons used here.

Results

80 GeV
$$<\sqrt{s_{eff}}<$$
 100 GeV $p_{had}>$ 0.5 $imes\sqrt{s_{eff}}/$ 2

- $\chi^2/ndf = 496.28/7$ with an average event weight of 41.35
 - Effective $\chi^2/ndf = 12.00/7$
 - Unweighted $\chi^2/ndf = 9.37/7$
- Statistical errors only.
- LEP (OPAL) results for comparison (full errors)

Results

80 GeV
$$<\sqrt{s_{eff}}<$$
 100 GeV $p_{had}>$ 0.5 $imes\sqrt{s_{eff}}/$ 2

- $\chi^2/ndf = 496.28/7$ with an average event weight of 41.35
 - Effective $\chi^2/ndf = 12.00/7$
 - Unweighted $\chi^2/ndf = 9.37/7$
- Statistical errors only.
- LEP (OPAL) results for comparison (full errors)

Summary

- Measurement of light quark branching fractions was implemented.
- Statistical errors significantly improved over corresponding OPAL analysis.
 - Factor \sim 3-4 for $R_{d,s}$.
- Major difficulties to be expected at ILC over LEP:
 - Reconstruction of ISR / effective center of mass.
 - dE/dx PID of high momentum leading particles.