TCMB 07/24/2018

CFS design status (based on Tohoku candidate site)

H. Hayano, KEK

History of ILC250 Design Discussion

ILC WG2 (Staging Plan) was initiated by S. Michizono after the discussion at LCWS2016-Morioka

Discussion of WG2 (Staging Plan for CFS) has been done by domestic(KEK, Tohoku) and international tele-conference.

Machine mapping research on Kitakami candidate site, and site-specific CFS design, in parallel. (by Tohoku, KEK, AAA and expert from universities) (access portal location, IP location are included)

Discussion of WG2 was held at CFS@ALCW2017-SLAC

Cost review of WG2(derivation from TDR and Tohoku estimation) at KEK Sep 26, 2017 (Lyn, Nakada, Steinar, J.Brau, Benno, etc)

Discussion of WG2 at CFS@LCWS2017-Strausburg

Discussion of ILC250 at CFS@ALCW2018-Fukuoka

How to estimate the cost of each option

Working assumption (1)

(1) Considering collision timing adjustment, condition must keep in any option, option C = remove length between PM+10 and PM+12, and remove TDR timing adjustment, and adjust to n=6

option D = adjust to n=10, it is option C + simple tunnel of 6477m (total). option D' = adjust to n=8, it is option C + simple tunnel of 3238m (total).

In TDR(Ecm=500GeV), this equation is not satisfied as follows (additional 294m exist);

 $(L_1 + L_2 + L_3) - L_4 = 9 \times C_{DR} + 294m$

Change Request is to adopt n=10;

 $(L_1 + L_2 + L_3') - L_4 = 10 \times C_{DR}$

with putting 1473m space in both LINAC (updated TDR)

In Option-C(Ecm=250GeV), required Linac length become half, then we can adopt n=6

 L_3 is shortened by 4 x C_{DR} , it means LINAC length is shortened by 6477.56m

Working assumption (2)

(2) Keep Energy Reach Margin enough safe to reach target energy (250GeV).

for enough positron production and meaningful energy reach of Higgs physics

(1) Module margin : margin to reach the target energy of the target experiment (0% in TDR)

2.5% module margin(3.1GeV each) for Ecm=250GeV

(2) Availability margin : margin to compensate cryomodule trip (1.5% in TDR, ~3 RF unit trip)

3 RF unit margin correspond to 3% for Ecm=250GeV

(3) Space margin : cryomodule space to be installed more cryomodule in future.

*Anytime 0.5% is required in the operation with cavity phase offset.

Total margin: 1.5%+ 0.5% = 2% for TDR Ecm=500GeV 2.5% + 3% + 0.5% = 6% for Ecm=250GeV, Option C

(3) In case of HG,HQ R&D success;

HG HQ upgrade :from 31.5MV/m Q0=1E10 \rightarrow 35MV/m Q0=1.6E10 by N-infusion. Same RF unit configuration, but increase of klystron output to 11MW, 1.75ms. Consider decrease of number of RF unit for 35MV/m. The length of tunnel is kept the same as 31.5MV/m.

Working assumption (3)

(4) Only 5Hz Linac operation is considered (not 10Hz).

- (5) Maximum cryo-line length of one cryogenics is 2.5km+/-10%, the same as TDR. This determines the interval of the access point, such as PM+/-8, PM+/-10, PM+/-12
- (6) Adopt CR0009 and CR0014 for cryogenics. The access hall is re-considered with this design change. Angle cross with Linac tunnel and access tunnel for cryomodule carry in, is considered.
- (7) Linac central shield wall is 1.5m thick. Total width of Linac tunnel is 9.5m.
- (8) Two Vertical shaft access to detector hall is assumed.
- (9) Design change of positron side BDS tunnel and injector-linac position are adopted.
- (10) Number of beam dump and power of them proposed by Yokoya are adopted.

Working assumption (4)

This determines energy sensitivity of positron production

(12) Remove access tunnels at turn-around (PM-13 and PM+13) of TDR tunnel, not for staging tunnel.

(13) One water-drain-tunnel is considered in the collision point, not at PM-13/PM+13.

(14) Simple tunnel means: normal wall finish, but no central shield wall, no AC power line, no cooling water line, however air-condition, lighting and water drain are installed.

(15) Digging tunnel during accelerator operation without serious interference.

(16) Keep the Damping Ring circumference. No design change for DR. This determines the requirement of collision timing condition.

Tunnel Optimization Tool development (1)

TOT(Tunnel Optimization Tool): CERN-KEK-ARUP development during 2015-2016 (originally developed for FCC)

Layout of accelerator tunnel into detailed geology & topography map

(1) optimize accelerator layout

(2) search access tunnel portal location

Slide from KEK internal review March2017 e of accelerator layout

Tunnel Optimization Tool development (2)

Tunnel Optimization Tool development (3)

Slide from KEK internal review March2017

Most updated ILC250 Design was reported in AWLC2018 Fukuoka

The International Linear Collider Machine Staging Report 2017

Addendum to the International Linear Collider Technical Design Report published in 2013

Linear Collider Collaboration / October, 2017 Editors:Lyn Evans and Shinichiro Michizono

Total tunnel length = 20549.5m (20.5km)

The International Linear Collider Machine Staging Report 2017 Addendum to the International Linear Collider Technical Design Report published in 2013

Linear Collider Collaboration / October, 2017 Editors:Lyn Evans and Shinichiro Michizono

Acc. length manipulation from TDR Recent Optics Deck

Ecm = 500GeV

 $4 \times C_{DR} = 4 \times 3238.68 \text{m} = 12550.68 \text{m} + X$

X = 404.04 m Timing adjust

Keep BDS tunnel length as TDR, but put verical bend 87.5m on both entrance of BDS

There is no vertical bend in the optics deck.

e+ Main Linac end region details

MPD	e-1	SC TUNE UP DUMP	311 KW	60kW	MPD	e+1	SC TUNE UP DUMP	311 KW	60kW		
MPD	e-2	EDRX TUNE UP DUMP	220 KW	60kW	MPD	e+2	PDRX TUNE UP DUMP	2 20 KW	60kW		
MPD	e-3	RTML TUNE UP DUMP	220 KW	60kW	MPD	e+3	RTML TUNE UP DUMP	2 20 KW	60kW		
HPD	e-4	BDS TUNE UP DUMP	14 MW	400kW	HPD	e+4	BDS TUNE UP DUMP	14 MW	400kW		
HPD	e-5	PRIMARY e-DUMP	14 MW	17MW	HPD	e+5	PRIMARY e+DUMP	14 MW	17MW		
MPD	e-6	RTML TUNE UP DUMP	220 KV	60kW	MPD	e+6	RTML TUNE UP DUMP	220 KW	60kW		
MPD	e-7	electron fast abort dump	250 KW	60kW	MPD	e+7	TARGET DUMP	200 KW	300kW		
	e-8	electron 10Hz dump	8MW								
MPD	= HIGH POWER DUMPs (1e-; 3e+; 6 RTML)					* = indicate non-stop dump (always on)					
HPD	=MEDIUM POWER DUMPs (4 BDS)					dicate 45K					

			010								
			erz		e-4	e+4		ero	e-7	e+/	
			DR		Electron	Positron		Electron	Electron	Undulator	51
0		Source Tune-	extraction	BC1 tune-up	BDS tune-	BDS tune-		BC2 tune-up	fast abort	photon	Electron 10
Quantity	Unit	Up Dump	dump	dump	up dump	up dump	Main dump	dump	dump	dump	Hz dump
Particle type		e±	e±	e±	e-	e+	e±	e±	e-	gamma	e-
Absolute Maximum Rat											
Particle energy	GeV	5	5	5	750	750	750	15	750	N/A	150
Bunch charge	nC	6.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Bunch energy	J	30	20	20	3004	3004	3004	60	3004	18	600
Abort Dump Maximum Ratings											
Dumped pulse length	μs		10.8	113	1.7	113	1201	3.3	113		
Dumped bunches			3000	310	5	310	2888	9	310		
Dumped pulse energy	kJ		60	6.2	15	931	4261	0.5	931		
Continuous Beam Maxi	mum Ra	1									
Particle energy	GeV	5	5	5	750	750	750	15	500	0.12	150
Pulse energy	kJ	79	53	53	4261	4261	4261	158	158	32	1577
Repetition rate	Hz	10	10	10	10	10	10	10	10	10	5
Average beam power	kW						17046			315	7886
Typical Tune-up Operat	ional Pa	arameters									
Particle energy	GeV	5	5	5	250	250	500	15	250	0.12	150
Bunch charge	nC	4.8	3.2	3.2	1.6	1.6	2.8	3.2	1.6	3.2	3.2
Bunches per pulse		1250	1312	1312	500	500	2450	1312	500	2625	2626
Pulse energy	kJ	30.0	21.0	21.0	200	200	3409	63.1	200.0	25.2	1262
Collision rate	Hz	2	3	3	2	2	4	1	N/A	10	5
Average beam power	kW	60	63	63	401	401	13637	63	N/A	252	6309
Nominal Power Rating	kW	60	60	60	400	400	17000	60	60	300	8000
TDR Power Rating	kW	311	220	220	14000	14000	14000	220	250	200	N/A

We need dump hausing design.

Electron turn around

Position not scale

We need dump hausing design.

Positron turn around

e⁺ BC1 tuneup dump

e⁺ BC2 tuneup dump

End of Slide