FONT Meeting Friday 3 August 2018

Stripline BPM results (June 2018) Douglas BETT

Bunch spacing scan: bunch charge

phase compensation: n/a

Bunch spacing scan: P1 position

phase compensation: none

Bunch spacing scan: P2 position

phase compensation: none

Bunch spacing scan: P3 position

Bunch spacing scan: bunch correlation

Table 1. Correlation coefficient *p*

	P1	P2	P 3
252.0	0.849	0.983	0.987
268.8	0.804	0.973	0.979
280.0	0.786	0.984	0.983
291.2	0.870	0.978	0.989
302.4	0.827	0.972	0.982
313.6	0.849	0.970	0.987
324.8	0.806	0.974	0.979

Bunch spacing scan: summary

- Correlation coefficient at P2, P3 > 0.97 for every bunch spacing
 - Note that shifts were dedicated to tuning the orbit of the second bunch
 - Stripline phase shifters already set
- Correlation coefficient at P1 much lower
 - P1 instrumented with diode processor but could simply be beam optics
- Two bunch functionality for ATF BPMs prefers longer spacing
- ...but Okugi-san selected 302.4 ns for the study (108 samples)

Upstream diagnostics: loPhase1 (b1)

Upstream diagnostics: loPhase1 (b2)

Upstream diagnostics: IoPhaseCal1

stripline phase shifters optimized "by eye" **Table 2.** phase sensitivity: $\left(\frac{\Delta}{\Sigma_I}\right) / \left(\frac{\Sigma_Q}{\Sigma_I}\right)$ **P2 P**3 0.01885 -0.06301 **b**1 b2 0.02266 -0.06350* 4.0405 -0.6070 * BETT, 29 June 2018 "Diode processor resolution" 0.4 - P2 b1 P3 0.3 0.2 0.1 Σ_{Q}^{Σ} -0.1 -0.2 -0.3 -0.4 50 100 250 300 150 200 0 Elapsed time [s]

phase compensation: linear (P2, P3) [loPhaseCal1]

±100 um points omitted from fit

Upstream diagnostics: mCal1

Upstream diagnostics: calibration summary

3 dB of attenuation on P1 insufficient at high charge \rightarrow use scan delay to deliberately sample off-peak

Table 3. Position calibration constant $k_v \times 10^6$

	P1	P2	P3
zeroMover1	-1189 ± 3	-4727 ± 21	5064 ± 15
	-1202 ± 3	-4723 ± 21	5072 ± 14
mCal1	-1213 ± 1	-4922 ± 3	5229 ± 1
	-1230 ± 1	-4929 ± 3	5229 ± 2
mCal2	-1669 ± 1	-4844 ± 2	5093 ± 1
	-1674 ± 1	-4854 ± 2	5114 ± 1
zeroMover2	-1595 ± 4	-4707 ± 35	5017 ± 25
	-1605 ± 4	-4712 ± 35	5024 ± 26
zeroMover3	-1185 ± 3	-4697 ± 23	5045 ± 18
	-1199 ± 3	-4696 ± 23	5063 ± 17
zeroMover4	-1544 ± 4	-4695 ± 23	5024 ± 15
	-1556 ± 5	-4696 ± 23	5029 ± 15

zeroMover Short scans used to centre beam in each BPM. Data taken at (relative) mover settings of -100 μ m, 0 μ m and +100 μ m. Not suitable for calibration due to saturation but quoted anyway.

calibration: [mCal2] phase compensation: linear (P2, P3) [loPhaseCal1] Resolution: jitRun1 (b1) -152 10 -154 10 Position [um] Position [um] Position [um] -158 -160 -162 -0 -2 [⊾]0 2 L 0 200 400 60 20 300 400 60 40 20 200 400 60 100 300 40 0 100 200 0 100 300 40 20 0 Trigger index Frequency Trigger index Frequency Trigger index Frequency 3600 3400 *σ* [um] C_{ki} C_{ki} σ 3200 ADC counts 3000 3000 -0.8923 **0.307 P1** 0.976 0.4252 **P1 P**2 **P**3 0.8033 0.332 1.397 1.2452 P2 **P**2 **P**3 P1 0.5963 0.290 **P**3 1.484 -0.8073 P2 **P**3 P1 2800 2600 <u></u>0

N = 400

300

100

200

Trigger index

400 60

40 20

Frequency

calibration: [mCal2]

phase compensation: linear (P2, P3) [loPhaseCal1]

Resolution: jitRun1 (b2)

calibration: [mCal2] phase compensation: linear (P2, P3) [loPhaseCal1] Resolution: jitRun2 (b1) -152 10 -154 10 Position [um] Position [um] Position [um] 156 -158 -160 0 -162 <u>-</u>0 -2 [⊾]0 2 L 0 200 300 400 60 20 400 60 20 200 400 60 100 40 0 100 200 300 40 100 300 40 20 0 0 Trigger index Frequency Trigger index Frequency Trigger index Frequency 3600 3400 σ [um] C_{ki} C_{ki} σ 3200 ADC counts 3000 3000 1.078 **P1** -0.9045 **P1 P**2 0.4283 **P**3 0.340 P2 1.536 1.1485 **P**2 **P**3 P1 0.5821 0.344

P3

2800

2600 L

100

200

Trigger index

300

400 60

40 20

Frequency

0

N = 400

1.681

P3

P1

0.6606 0.306

-0.7071

P2

calibration: [mCal2]

phase compensation: linear (P2, P3) [loPhaseCal1]

Resolution: jitRun2 (b2)

phase compensation: linear (P2, P3) [IoPhaseCal1] calibration: [mCal2] **Resolution: longJitRun1 (b1)**

Trigger index

P1

P2

P3

Frequency

[um]	k	i	C _{ki}	j	C _{kj}	σ
204	P1	P2	0.5026	P3	-0.9629	0.288
931	P2	P3	1.2717	P1	0.7536	0.292
065	P3	P1	-0.7466	P2	0.6576	0.266

Frequency

Trigger index

phase compensation: linear (P2, P3) [loPhaseCal1] calibration: [mCal2]

calibration: [mCal2] phase compensation: linear (P2, P3) [loPhaseCal1] Resolution: longJitRun1 (b1) [window] 15 10 10 10 Position [um] Position [um] Position [um] -10 -5 0 75 50 25 0 75 50 25 0 75 50 25 0 2000 3000 0 1000 2000 3000 0 2000 3000 1000 1000 Trigger index Frequency Trigger index Frequency Trigger index Frequency 3500 C_{ki} C_{kj} σ [um] σ 3000 counts **P1** 1.182 0.5142 -0.9708 **0.265 P2 P**3 **P1** 0 2500 P2 1.981 1.2942 0.7787 0.268 P2 **P**3 P1 **P**3 2.094 -0.7485 P2 0.6589 0.245 **P**3 **P1** 2000

N = 800

0

3000

2000

Trigger index

1000

75 50 25 0

Frequency

phase compensation: linear (P2, P3) [IoPhaseCal1] calibration: [mCal2] Resolution: longJitRun2 (b2) [window] ¹⁵ ¹⁰

Resolution: Summary

- Estimated resolution of 3-BPM system = 311 ± 5 nm (combination of all results)
- Fit coefficients stable within 17.5%
 - excluding C_{12} and C_{21} , stable within 9%

calibration: none

phase compensation: none

Feedback: gain calculation

Gain parameters = coefficients for BPM position in expression for kicks:

$$\begin{pmatrix} v_{K1} \\ v_{K2} \end{pmatrix} = \begin{pmatrix} G_{P2K1} & G_{P3K1} \\ G_{P2K2} & G_{P3K2} \end{pmatrix} \begin{pmatrix} y'_{P2} \\ y'_{P3} \end{pmatrix}$$

Corrected position is equal to uncorrected position plus a term for each kicker; feedback condition requires it be zero:

$$\begin{pmatrix} Y_{P2}'' \\ Y_{P3}'' \end{pmatrix} = \begin{pmatrix} y_{P2}'' \\ y_{P3}'' \end{pmatrix} + \begin{pmatrix} H_{K1P2} & H_{K2P2} \\ H_{K1P3} & H_{K2P3} \end{pmatrix} \begin{pmatrix} v_{K1} \\ v_{K2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Assuming $y'_{P2} = y''_{P2}$ equating the vector of kicks gives the result:

$$G = -H^{-1}$$
 where $H^{-1} = \frac{1}{|H|} \begin{pmatrix} H_{K2P3} & -H_{K2P2} \\ -H_{K1P3} & H_{K1P2} \end{pmatrix}$

So that the individual expressions for the gain parameters are:

$$G_{P2K1} = -\frac{H_{K2P3}}{|H|}, \quad G_{P3K1} = \frac{H_{K2P2}}{|H|}, \quad G_{P2K2} = \frac{H_{K1P3}}{|H|}, \quad G_{P3K2} = -\frac{H_{K1P2}}{|H|}$$

calibration: none

phase compensation: none

Charge low enough to resume on-peak sampling of P1 signals. Use mCal1 with $y_{P1} = \Delta_{P1} / \Sigma_{P3}$

Feedback: Summary

Ignoring low charge results $(f = \sigma_1/\sigma_2)$

harge results $f_{P2} = 4.03 \pm 0.06$ $(f = \sigma_1/\sigma_2)$ $f_{P3} = 4.23 \pm 0.08$

	σ_1 [um]	σ_2 [um]	$ ho_{12}$
P1	1.091 ± 0.021	1.323 ± 0.025	0.896 ± 0.005
P2	1.534 ± 0.019	0.381 ± 0.004	0.504 ± 0.025
P3	1.698 ± 0.029	0.404 ± 0.010	0.545 ± 0.019

Grand Summary

• Bunch spacing scan

 High bunch-to-bunch correlations (> 0.97) observed at feedback BPMs for selected bunch spacing settings in the range 252 ns – 324.8 ns

Upstream diagnostics

- Phase sensitivity reduced to $\sim \frac{1}{2}$ µm per degree using upstream phase shifters
- Dynamic range of diode processor with 3 dB attenuation ~1 mm
- Resolution of 3BPM system including diode processor on P1 = 311 ± 5 nm cf. result from paper = 291 ± 10 nm

Feedback results

- Feedback correction factor > 4 achieved; consistent with observed bunch correlation
- Mysterious factor of 2 between calculated gains and gains observed to work in practice

