Benchmark Analysis for $\mathrm{e}^{+} \mathrm{e}^{-}$-> gamma Z process

Takahiro MIZUNO (Sokendai Univ.)
August 8, 2018

Introduction

- Physics motivation of the analysis : EFT analysis for $\mathrm{e}^{+} \mathrm{e}^{-}->\mathrm{Z} / r r / \mathrm{ZZ}$
- Asymmetry in left- and right-handed eeZ coupling is very powerful to improve the constraints on following Dimension-6 EFT operators

$$
\Delta \mathcal{L}=i \frac{C_{H L}}{v^{2}} \xrightarrow{\left(\Phi^{\dagger} D^{\mu} \Phi\right)\left(\bar{L} \gamma_{\mu} L\right)}\left(\mathrm{VZ}{ }^{\mu} \mathrm{V}\right)
$$

contact interaction

Introduction

Detector benchmark motivation of this analysis

Energy Scale Calibration

Mass of Z: precisely known
$E_{Z}{ }^{2}-E_{\gamma}{ }^{2}=M_{Z}{ }^{2}$
$E_{Z}+E_{\gamma}=\underset{ }{E_{C M}} 500 \mathrm{GeV}$
Photon Energy Calibration, Jet Energy Scale Calibration

Analysis Setup

- Signal Channels $\mathrm{e}^{+\mathrm{e}}$ - $->$ Z Z Z -> II/qq ($\mathrm{Ecм=500} \mathrm{GeV)}$
- In this time, $I I=\mu^{+} \boldsymbol{\mu}^{-}$
- I used one of the DBD samples "P2f_z_l.eL.pR"
- Event Selection

Step 1: select events with two isolated leptons (using IsolatedLeptonTagging processor)
-> 3 diagrams are included in the sample

$$
M\left(\mu^{+} \mu^{-}\right)=500 \mathrm{GeV}
$$

Step2: select events with one isolated photon (This step is not done yet)

$\mathrm{M}\left(\mu^{+} \mu^{-}\right)$distribution

as function of angle

$M\left(\mu^{+} \mu^{-}\right)>400 \mathrm{GeV}$

Entries

Efficiency

coslep $=$ the angle μ^{-}is emitted

- The efficiency is closed to 100% at any angle.

$\left|M\left(\mu^{+} \mu^{-}\right)-91.2\right|<10 \mathrm{GeV}$

Entries

Efficiency

coslep $=$ the angle μ^{-}is emitted

- The efficiency around coslep ~ 0 is very low (~ 0.5). <- low energy muons are cut (momentum cut)? <- two muons go in the almost same direction (cut by isolation criteria)?

$\left|M\left(\mu^{+} \mu^{-}\right)-91.2\right|<10 \mathrm{GeV}$

muon energy

- In the isolated lepton selection process, low energy muons are cut so as to cut muons from jet which have low energy. -> need to check muon energy

The number of low energy events
is not so many.
140 Energy of muon

Coslep1 (μ^{-}angle) vs. Coslep2 (μ^{+}angle)

- Two muons are cut if they travel in the almost same direction -> Their angles are checked.
coslep 1 coslep1:coslep2 $\{p d g 0==13 \& \&$ abs $(m z-91.2)<10\}$

coslep 1 coslep1 $:$ coslep2 $\{p d g 0==13 \& \&$ abs $(m z-91.2)<10\}$

- When one lepton is at the barrel region, the other one goes into beam direction which is hence not reconstructed.

$M\left(\mu^{+} \mu^{-}\right)<20 \mathrm{GeV}$

coslep $1=\mu^{-}$angle, Coslep2 $=\mu^{+}$angle

- They are rejected as they go in the same direction (cone cut).

Conclusion

- Benchmark analysis for $\mathrm{e}^{+} \mathrm{e}^{-}$-> gamma Z is started.
- Efficiency is studied for 3 kinds of processes (diagrams).
- In the $\mathrm{M}\left(\mu^{+} \mu^{-}\right)>400 \mathrm{GeV}$ case, efficiency is close to 100\% at any angle.
- In the |M($\left.\mu^{+} \mu^{-}\right)-91.2 \mid<10 \mathrm{GeV}$ case, efficiency is low (~ 0.5) at coslep ~ 0. This is because one of the other muon tends to go in the beam pipe direction.
- In the $M\left(\mu^{+} \mu^{-}\right)<20 \mathrm{GeV}$ case, efficiency is very low because two muons are collimated and hence are rejected by isolation requirement.

Future Plan

- Estimate the energy resolution for muons
- Implement isolated photon selection and study photon section efficiency and photon energy resolution
- Look at the new samples for large and small ILD model
- Do full analysis including background
- Study electron channel, and jet channel

