

Iohn Adams Institute or Accelerator Science

ILC Simulations

Rebecca Ramjiawan FONT meeting Friday, 10th August 2018

- Basic model of FB system implemented in MATLAB, generate bunch trains and model BPM, kicker and lever-arm effect.
- MATLAB model 1312 bunch trains: bunch train structures with constant offsets, offsets between consecutive bunches, harmonics of a range of frequencies.
- MATLAB model FB system: BPM with resolution effects, kicker with kicker noise, proportional control, proportional and integral control, averaging over multiple bunches, weighted averaging over two bunches (bunch_i and bunch_{i-1}).
- Lucretia: generate 1312 bunch train and track through the BDS to the IP, model bunchbunch interaction at the IP using Guinea-Pig.
- Deflection angle curves modelled for various beam parameters showing dependence on: bunch size (x,y), bunch length, charge.

Feedback Loop Simulation (MATLAB)

Ideal Situation – Rigid Beam

hn Adams Institut

Resolution Effects

Rigid bunch trains, with 4 nm offset, with feedback with BPM resolution 1 um operating.

Luminosity vs. Resolution

Two rigid bunch trains with zero offset (i.e requiring no correction), with a BPM with a range of resolutions (0 to 20 um).

As expected, very little degradation to luminosity from a BPM with up to 1 um resolution.

Fractional luminosity for FB system with 1 um resolution BPM and rigid beam: 0.9985 * L_0 .

Gain scan

Rigid bunch trains with 10 nm initial offset and proportional gain feedback. Scaling the feedback gain. (1 is nominal) Gain: 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2 Bunch train structures

5

10

Bunch number

15

20

25

10 г

8

 $\mathbf{2}$

0

0

y-offset (nm)

Bunch train structure

Bunch train: 1 nm initial offset with offset of 0.4 nm between consecutive bunches.

Proportional gain feedback, with 0 nm resolution. Would not take out the 0.4 nm difference between consecutive bunches.

Leading to a loss in luminosity.

15

10

Bunch number

0.8

0.6

0.4

0.2

0

5

 $\frac{\Gamma}{\Gamma}$

25

20

0

0

5

10

Bunch number

15

25

20

9

Proportional Integral Control

0.4 nm offset between consecutive bunches. The 0.4 nm is not removed by just proportional feedback. Nominal gains for proportional term, Gains for integral term: 0, 0.5, 1, 1.5

Harmonic (across train)

Bunch train: Banana shape (half cycle across bunch train).

Proportional gain feedback, with 0

nm resolution. Would not take out the difference between consecutive bunches. (Effectively differential of harmonic)

Leading to a loss in luminosity.

Frequencies of harmonic

Jitter here defined as standard deviations of y-offsets (between beams at the IP) across a bunch train after feedback.

- Dependence of feedback performance on frequency of harmonic structure introduced to bunch train.
- Worst performance (peak of curve) occurs when frequency of harmonic =1312*pi, as this corresponds to bunch-to-bunch correlation of -1.
- Higher frequencies than 1312*pi when sampled at the bunch frequency are equivalent to lower frequency harmonics and consequently perform better.

Proportional Integral Control: Harmonic

Harmonic structure and BPM Resolution

Averaging Bunches to Improve Bunch Position Measurement

Averaging over multiple bunches

If noise added is uncorrelated between consecutive bunches, e.g resolution effects then averaging offers some improvement. Very minor improvement for resolution of 1 um. Initially rigid trains with offset 70 nm.

Would become important for beams with poorer bunch to bunch correlation.

John Adams Institute for Accelerator Scienci

Reduced bunch-to-bunch correlation

Initial offset 70 nm with random noise added to each bunch.

٠

- Random noise introduced bunch by bunch to reduce correlation and degrade feedback performance.
- Position measurements fed into feedback system are now averaged over some number of bunches (x-axis) and the average luminosity recovered shown (y-axis)

Weighted averaging over **two** bunches

Tracking the bunches through the BDS

Bunches at IP (Lucretia)

John Adams Institute for Accelerator Science

Horizontal beam size = 474 nm Vertical beam size = 5.9 nm 80000 macroparticles.

I still need to figure out which/if any wakefields are implemented.

MATLAB structure called WF.ZSR, possibly short range wakefields?

First bunch in train shown.

1312 bunch train tracked through BDS

y-position of bunches at IP modelled in Lucretia for a train of 1312 bunches tracked through the BDS to the IP.

10000 macroparticles modelled per bunch, mean bunch position shown.

Deflection Angle Curves

Nominal Curves

Nominal beam-beam deflection angle curve and luminosity curve vs. beam-beam offset at the IP.

Maximum deflection: 365 urad Maximum luminosity: 1.81 \times 10^{34}

Horizontal beam size (sigma_x)

Deflection-angle curves for a range of horizontal beam size values (sigma_x): [0.8,0.9,0.99,1,1.01,1.1,1.2]*474 nm

Vertical beam size (sigma_y)

Deflection-angle curves for a range of vertical beam size values: [0.8,0.9,0.99,1,1.01,1.1,1.2]*5.9 nm

10

Bunch length (sigma_z)

Deflection-angle curves for a range of longitudinal beam size values: [0.8,0.9,0.99,1,1.01,1.1,1.2]*300 um

10

Charge (number of particles per bunch)

Deflection-angle curves for a range of bunch charges:

As function of number of particles per bunch [0.8,0.9,0.99,1,1.01,1.1,1.2]*2e10.

Energy

Deflection-angle curves for a range of energies: [248:0.1:252] GeV.

Shows no real variation with bunch energy \checkmark

- Basic model of FB system implemented in MATLAB.
- Ability to model bunch trains: bunch structures inc. constant offsets, offsets between consecutive bunches, harmonics of a range of frequencies.
- Ability to model FB system: proportional control, proportional and integral control, averaging over multiple bunches, weighted averaging.
- Generate 1312 bunch train in Lucretia and track through the BDS to the IP, model bunchbunch interaction at the IP using Guinea-Pig.
- Deflection angle curves modelled for various beam parameters showing dependence on: bunch size (x,y), bunch length, charge.