Hadron Production in Photon-Photon Processes at the ILC and BSM signatures with small mass differences

ILD Software Analysis Meeting

Swathi Sasikumar 22nd August 2018

Introduction

> Naturalness requires light higgsinos at electroweak scale

$$m_Z^2 = 2 \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2$$

- Natural region is $\mu = 100-300 \text{ GeV}$ -> (accessible for ILC500) [arXiv: 1212.2655, arXiv:1404.7510]
- Light higgsinos $-\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ nearly > mass degenerate

Introduction

> Light higgsinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ can be discovered/ excluded at ILC - <u>DESY-THESIS-2016-001</u>

> The case was studied at two benchmark scenarios

 $\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) = 770 \text{ MeV} \Longrightarrow dM770$

 $\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) = 1.6 \text{ GeV} => dM1600$

> Charginos decay hadronically and leptonically

Simulation and Reconstruction

- > Study of effect of $\gamma\gamma \rightarrow \text{low pt}$ hadron overlay on the higgsino samples,
 - $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ from Whizard 1.95 (500 GeV)
 - $\gamma\gamma$ events from improved Barklow generator and Pythia
- > Simulated $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ samples:
 - v02-00-01
- > Reconstructed $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ events overlaid with $\gamma \gamma \rightarrow \text{low pt hadron events} (1.05 events /BX at 500 GeV)$
 - v02-00-01
 - Pair backgrounds too included

Vertex Smearing

- > Beam spot not a perfect spot has a spread
- > Simulated $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ samples with vertex smeared along z axis -(196.8)
- > Four different samples of $\gamma\gamma \rightarrow \text{low pt}$ hadron events simulated with smeared vertices Guinea Pig

- Displacement of vertices in z direction
- Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- Identifying the tracks coming from such vertices and removing them would be an effective method
- This method cannot be used for purely neutral events like $\gamma \gamma \rightarrow \pi^0 \pi^0$

Reconstruction level and the track parameters

- Standard vertex finding algorithm reconstructs one single primary vertex for each event
- More complex algorithm to group the tracks to find different vertices
- > Grouping based on difference in z0 significance
- > Unlike the particles in γγ → low pt hadron events, charginos have a finite life time which makes the d₀ parameter important
- >Develop a new algorithm which groups the closest tracks to form vertex positions

Detailed study of do parameter

dM 770

dM 1600

With higher mass difference smaller d₀

In dM1600 d₀ not a handle

d₀ projection on z₀-z_{vtx}

- >Group tracks with z₀
- >For z_0 to be comparable with z_{vtx} track required to be closest to z-axis
- > Tracks with higher d₀ are away from z-axis
- > Tracks above certain d_0 threshold value to be removed and treated differently

Removal of high do tracks

- >For dM770 tracks with higher d₀ mostly include signal tracks
- >Among the tracks coming from two chaginos - one has higher d₀ other lower
- >For dM770 track with highest d₀ removed assuming to be one signal track

Pre-cuts to the algorithm

>dM 770 :

- track with highest d₀ removed
- d0 < 0.3 mm

• z0 < 15 mm

>No of tracks < 13

- Curling of low p_T tracks
- Events with minimum 2 signal tracks reconstructed
- >Pair backgrounds are cheated off

Algorithm - flowchart

Results from the algorithm

>No. of groups created with algorithm compared with no of MCvtx

> If MC vertices very close and within the detector impact parameter resolution to separate them then they are combined together

Highest do track

>The track with highest d0 value in dM770

>80% times is a chargino

Swathi Sasikumar | Hadron Production in photon-photon processes | 19-03-2018 | Page

Algorithm performance plot

> Signal and background nicely separated

> No. of groups having signal and background mix is meagre

Conclusion and Outlook

>Impact of $\gamma\gamma \rightarrow low$ pt hadron overlay on the higgsino events very important

- >Displaced vertices for the signal and background events and the finite life time of the charginos very important factors to develop new method
- >New algorithm leading towards the method to remove the $\gamma\gamma \rightarrow low$ pt hadron events developed

>Results very encouraging!!

Swathi Sasikumar | Hadron Production in photon-photon processes | 19-03-2018 | Page

>Weighted avg position =
$$\sum_{i} \frac{Z0[track_i]}{Z0[error_i]} / \sum_{i} \frac{1}{Z0[error_i]}$$

>Weighted Avg Error =
$$1/\Sigma_i \frac{1}{Z0[error_i]}$$

Reconstruction efficiency for $\gamma\gamma \rightarrow \text{low pt hadron tracks}$

- ILDPerformance -Diagnostics package used for tracking efficiency
- Silicon Tracking algorithm used to reconstruct tracks
- > Reconstruction efficiency of $\gamma \gamma \rightarrow \text{low } p_T$ hadron events consistent with $t\bar{t}$ events
- Reconstruction efficiency for the low pt hadron events
 - Above 300 MeV and at higher angles 99%
- > Important to develop method to remove $\gamma\gamma \rightarrow \text{low pt hadron events}$

ref. Tomohiko Tanabe

Precuts for the Algorithm

- The event should have a hard ISR photon with E > 10 GeV
- >ISR photon gives a pt kick to the bear electron - beam electron within detector acceptance
- Missing energy from beam particles overlay events
- For signals the pt kick balanced by the invisible neutralinos
- No effect on the signal decay products or the beam electron

Summary and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma \rightarrow$ low pt hadrons was developed with more realistic particle contents for events
- Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- > Work in progress!!
- > OUTLOOK:
 - The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of $\gamma\gamma$ overlay

Detailed study of do parameter

- Chargino different branching ratios but always decays into one charged particle
- > Every event should have two tracks from the signal $(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$
- The d₀ significance of the two tracks of the signal are plotted
- >60 % cases one track has high value of d0 significance and other is smaller
- Rest 40 % cases d₀ significance for both tracks are similar

Method Development to remove backgrounds

- > Primary step separating events as in table
 - Pythia events complex 55 % events good chances for finding vertex
 - Only Separating Barklow events as below 45 %

Processes	No. events [%]	Methods to tackle
$\gamma\gamma \to \pi^+\pi^-$	33.43 %	displaced vertices
$\gamma\gamma o \pi^0\pi^0$	5.68 %	only photons 🙁
$\gamma\gamma \to \rho^+\rho^-$	1.26 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 ho^0$	2.68 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 \omega$	0.7 %	displaced vertices & rho tag

Method - Using Rho meson tag

- > $\gamma \gamma \rightarrow \rho^0 \rho^0$ events rho meson decay to two π^+ and two π^- (2.68 %)
 - Events with exactly 2 ^{+ve} and 2 ^{-ve} tracks selected
 - Invariant mass calculated from two different combinations
 - mass closest to rho meson chosen and plotted
 - The pion combinations give rho mass -770 145 MeV
 - Only 0.54% events reconstructed exactly as 2 +ve and 2 -ve tracks

Event Properties of Pythia

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a $q\bar{q}$ pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

> Pythia cannot simulate below 2 GeV

Cross sections for Pythia events

- > Comparison of $\gamma\gamma$ tow Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP,PETRA and VEPP
- > $\sqrt{s_{\gamma\gamma}}$ > 10 GeV : Good description of LEP data with Pythia
- > $\sqrt{s_{\gamma\gamma}}$ < 10 GeV: Measurements have large uncertainties and widespread
- > Pythia event properties studied in detail for better understanding

Does $\sqrt{s_{\gamma\gamma}}$ < 1 GeV matter?

- > Detector acceptance for $\sqrt{\sqrt[8]{4}} \text{ GeV}$
 - Select events $\sqrt{s_{\forall\gamma}} 1 \text{ GeV}$
 - Events generated from real-real, real-virtual and virtual-virtual photon collisions
 - Simulate ILD in SGV fast simulation
- > Reconstruction in SGV
 - Particles having <u></u> layer hits : "Charged"
 - Particles hitting calorimeter : "Neutral"

Ref: archiv:1203.0217v1

Event Properties of Pythia

Momentum acceptance for Pions

Momentum acceptance:

- Dividing seen stable pions with all true pions
- The acceptance for most particles > 80%
- Particles with high Pt but moving in forward direction - low acceptance

A dedicated event generator for $\gamma\gamma$ processes

- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma \rightarrow \log pT$ hadron processes
- > Below 2 π_m pure QED beam-beam interactions modeled by dedicated programs - Guinea Pig
- Need to evaluate the impact of uncovered region how can it be modeled?
- > Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- > The particles below 2 GeV Very low Pt
- > Could these particles be observed in the detector?
- > How important is it to model this area?

Angular acceptance for Pions

> Angular acceptance:

- Dividing seen stable pions with all true pions
- The acceptance for most particles > 80%
- Particles with high Pt but moving in forward direction - low acceptance

Momentum acceptance of pions with full simulation

- Cross checked the results with full > simulation
- $\sqrt{\sqrt{2}}$ acceptance for pions at GeV
- Acceptance reasonable enough to > model the region below 2 GeV
- Work under progress to confirm the > results

Modeling the low energy regime

- The issues discovered studied and conveyed to the author
- As expected from Chiral sum rule and Regge theory the generator now produces large variety of events
- is greater The cross-sections for producing > ρ^{\pm} than
- A better version of the generator was thus developed correcting the issues in older versionbig progress!!!

