

## **Status of ILD Benchmarking for IDR**

CCCCCCCCCC

J. List ILD General Meeting September 4, 2018

# Outline



- Overview
- Status of the Benchmarks
- Next steps





- quantify the dependence of physics performance on various (high-level) detector performance aspects:
  - momentum resolution
  - jet energy resolution
  - flavour tag
  - particle ID
  - V0, pi0, tau, charmed/beauty meson, ... reconstruction
- quantify expected gain from suspected improvements of the detector, e.g. ToF, new vertex geometry, ...
- identify limiting factors in detector design and/or reconstruction and quantify their impact
- compare large (3.5 T) vs small (4T) ILD
- write a chapter in the IDR
- get the "new" software to similar maturity as DBD as necessary preparation for a new 250 GeV physics MC production



- cover a broad range of important performance aspects
- focus on channels where dependence on detector is expected to dominate over limitations of (current) reconstruction
- ECM = 500 GeV (in one case 1 TeV) since more challenging for detector than 250 GeV:
  - higher momenta
  - more collimated jets
  - more forward topologies
  - higher backgrounds
  - ...



#### • 2-3 analysers per benchmark, which provide

- an overview confluence page (visible to all of ILD), linked from: <u>https://confluence.desy.de/display/ILD/Benchmarks+for+physics-driven+detector</u> <u>+optimisation</u>
- code, scripts, macros, README on github: <u>https://github.com/ILDAnaSoft</u>
- regular presentations in ILD software/analysis meetings
- eventually an public ILD note or paper

#### • 1-2 reviewers

- follow the development of the analysis (not much time for an a posteriori review!)
- will review the note / paper

#### • Physics WG conveners (Higgs/EW, top/flavour, BSM) & Physics Coordinators:

- guide and monitor analyses, ensure communication
- exchange information in weekly conveners meeting

## Status of Benchmarks - Higgs/EW



| main physics observable(s):<br><b>M (bb) @ 500 GeV</b>                                                       | analyser(s):<br>Ali Ebrahimi (U Hamburg)<br>Junping Tian (U Tokyo) |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| intermediate observable(s):<br>M(bb) spectrum with and without constrained fit                               | reviewer(s):<br>Frank Simon (MPI Munich)                           |
| <ul> <li>performance aspect(s):</li> <li>b-tag</li> <li>lepton ID</li> <li>JER and JES for b jets</li> </ul> | last presentation:<br>July 11                                      |
| status summary:<br>• work on new samples has started                                                         |                                                                    |

# BR(H-> $\mu\mu$ ) - overview



| main physics observable(s):<br><b>BR(H-&gt;μμ) from nunuH @ 500 GeV</b>                                                                          | analyser(s):<br>Shin-ichi Kawada                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| intermediate observable(s):<br><b>Μ(</b> μμ <b>)</b>                                                                                             | reviewer(s):<br>Ivanka Bozovic,<br>Filip Zarnecki |
| <ul> <li>performance aspect(s):</li> <li>high momentum <b>pt resolution</b></li> <li><b>muon ID</b> efficiency/purity</li> </ul>                 | last presentation:<br>Aug 22                      |
| <ul> <li>status summary:</li> <li>DBD analysis completed</li> <li>advanced paper draft (DBD)</li> <li>analysis of new samples started</li> </ul> | 9                                                 |



# M(H->bb) - results



DBD analysis of 1 ab<sup>-1</sup> at CoM energies of 350 and 500 GeV

- Full simulation
- Jet-specific energy resolution
- Mass reconstruction with/out kinematic fitting
- Statistical uncertainty comparable with the recoil technique



- IDR analysis
- Study effect of heavy quarks
- Investigate other sources of systematic uncertainties
- Intermediate observables: JER, Jet direction resolution, lepton momentum resolution
- Work in progress



# H-> $\mu\mu$ - results



# H->invisible - overview

![](_page_11_Picture_1.jpeg)

| main physics observable(s):                                                                                                                                             | analyser(s):                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 95% CL upper limit on BR(H->invisible) from qqH @ 500 GeV                                                                                                               | Yu Kato                                  |
| intermediate observable(s):                                                                                                                                             | reviewer(s):                             |
| <b>M(jj), Recoil Mass</b>                                                                                                                                               | Marcel Vos                               |
| <ul><li>performance aspect(s):</li><li>jet energy resolution</li><li>recoil mass resolution</li></ul>                                                                   | last presentation:<br>Sep 5, 2018 (plan) |
| <ul> <li>status summary:</li> <li>DBD analysis @ 250 GeV completed</li> <li>analysis of new samples started</li> <li>JER evaluation of new samples completed</li> </ul> | 10                                       |

![](_page_12_Picture_0.jpeg)

# H->invisible - results

 $\sqrt{s} = 250 \text{ GeV}, (Pe^{-}, Pe^{+}) = (+0.8, -0.3), \int Ldt = 250 \text{ fb}^{-1}, \text{ Cut: No.1~No.9}$  w/ kinematic fit

DBD analysis for qqH, 2 ab<sup>-1</sup> 250 GeV, canonical pol. sharing

- left pol.: 0.44% (900 fb<sup>-1</sup>)
- right pol.: 0.31% (900 fb<sup>-1</sup>)
- using kinematic fit with JER

IDR analysis for qqH 4ab<sup>-1</sup> 500 GeV, canonical pol. sharing

- evaluate JER with new samples
- left pol.: x% (1800 fb<sup>-1</sup>)
- right pol.: y% (1800 fb<sup>-1</sup>)
- work in progress...

![](_page_12_Figure_12.jpeg)

#### ee -> $\tau\tau$ - overview

![](_page_13_Picture_1.jpeg)

main physics observable(s):

A\_FB, A\_LR, tau pol @ 500 GeV

intermediate observable(s):

- $\tau$  decay mode identification matrix
- $\tau$  momentum reconstruction

#### performance aspect(s):

- $\tau$  reconstruction eff / pur
- pi0 reconstruction, energy resolution

status summary:

- MC level studies to estimate above
- now working on full reco
- for polarisation, concentrating on tau+ -> pi+ nu and tau+
   -> pi+ pi0 nu decay channels [large BR, strong sensitivity to polarisation]

analyser(s): Keita Yumino (KEK) Daniel Jeans (KEK)

reviewer(s): Mikael Berggren (DESY)

last presentation: Sept 5 (tomorrow)

#### ee -> $\tau\tau$ - results

![](_page_14_Picture_1.jpeg)

proof of principle plot:

 $\tau$ - vs  $\tau$ + polarisation angle

for  $\tau \rightarrow pi pi0 nu$ decay

=> on a good way...

ee->tautau, high inv. mass, (rho,rho) tau decays

![](_page_14_Figure_7.jpeg)

![](_page_15_Picture_1.jpeg)

| main physics observable(s):<br><b>Mw, aTGCs, polarisation @ 500 GeV</b>                                                                     | analyser(s):<br>Mila Pandurovic (Belgrade)<br>Justin Anguiano (Kansas) |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| intermediate observable(s):                                                                                                                 | Elisabetta Gallo (DESY)                                                |
| W production and decay angles                                                                                                               | reviewer(s):                                                           |
| performance aspect(s):                                                                                                                      | Klaus Desch (Bonn)                                                     |
| <ul> <li>JES / JER</li> <li>lepton ID and resolutions</li> </ul>                                                                            | last presentation:<br>none yet, possibly Sep 5?                        |
| <ul> <li>status summary:</li> <li>Justin working on constrained fit incl. vertex information</li> <li>Elisabetta getting started</li> </ul> |                                                                        |
|                                                                                                                                             |                                                                        |

![](_page_16_Picture_0.jpeg)

| main physics observable(s):                                                                                                                                                                                                         | analyser(s):                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| <b>limits on aQGC @ 500 GeV</b>                                                                                                                                                                                                     | Jakob Beyer (Dresden)        |
| intermediate observable(s):                                                                                                                                                                                                         | reviewer(s):                 |
| <b>Mjj vs Mjj from nunuqqqq</b>                                                                                                                                                                                                     | Taikan Suehara               |
| <ul> <li>performance aspect(s):</li> <li>JER &amp; JES (udscb)</li> <li>jet angle resolution</li> </ul>                                                                                                                             | last presentation:<br>Jun 13 |
| <ul> <li>status summary:</li> <li>new software chain just became fully ready for 1 TeV</li> <li>well prepared on preliminary samples, waiting for production</li> <li>problems with Whizard2 for anomalous coupling part</li> </ul> |                              |

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_0.jpeg)

# Quartic Gauge Couplings - results

![](_page_18_Figure_2.jpeg)

identified two "culprits"

- energy scale for heavy quark jets
- jet clustering...
- Lol: only "uddu" and cheated jets???

![](_page_18_Figure_7.jpeg)

# e+e- -> gamma Z - overview

![](_page_19_Picture_1.jpeg)

| main physics observable(s):<br>A_LR for cross section of e+e- → gamma Z@ 500 GeV                                  | analyser(s):<br>Takahiro Mizuno,<br>Junping Tian |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| intermediate observable(s):<br><b>cosθz,M(</b> <i>f</i> f̄ <b>)</b>                                               | reviewer(s):<br>Matthew Wing                     |
| performance aspect(s):<br>lepton/photon reconstruction efficiencies,<br>momentum/energy resolution/scale, JER/JES | last presentation:<br>Aug 22, 2018               |
| status summary:<br>• DBD analysis started<br>• Analysis of new samples will be started on Sep<br>13               | 20                                               |

### e+e- -> gamma Z - results

![](_page_20_Picture_1.jpeg)

DBD analysis for  $e_R + e_L -> gamma Z$ , collection efficiency is studied.

- In the M( $\mu$   $\mu$ ) > 400 GeV case, it is close to 100% at any angle. \_ \_
- In the  $|M(\mu \ \mu) 91.2| < 10$  GeV case, it becomes low (~0.5) when one of the other muon tends to go in the beam pipe\_direction.
- In the M(μ μ) < 20 GeV case, it is very low because two muons are collimated and hence are rejected by isolation requirement.

DBD analysis for e\_R + e\_L-> gamma Z, muon energy resolution and  $\sigma_{\kappa}$  are studied.

- Standard deviation (STDV) of  $\sigma_{\kappa}$  is <10<sup>-4</sup>
- STDV of  $\sigma_{\kappa}$  is higher (but <10<sup>-4</sup>) when muon energy is low. This is because there are more multiple scatterings.
- STDV of  $\sigma_{\kappa}$  of TPC is theoretically 2\*10<sup>-5</sup>.

![](_page_20_Figure_10.jpeg)

#### Future plan:

- Look at the new samples for large and small ILD model
- Do full analysis including background
- Study electron channel, and jet channel

### Status of Benchmarks - Top/ Flavour tag

## tt->bbqqqq - overview

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

## tt->bbqqqq - overview

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

# H->bb/cc/gg - overview

![](_page_24_Picture_1.jpeg)

| main physics observable(s):<br><b>BR (H-&gt;bb/cc/gg) from vvH @ 500 GeV</b>                                                                                                     | analyser(s):<br>Masakazu Kurata (KEK)                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| intermediate observable(s):<br><b>М<sub>н</sub> (bb/cc/gg)</b>                                                                                                                   | Ryo Yonamine (Tohoku)<br>reviewer(s):<br>Hiroaki Ono (NDU Niigata)          |
| <ul> <li>performance aspect(s):</li> <li>b-tag / c-tag</li> <li>JER / JES for heavy flavours</li> </ul>                                                                          | Frank Simon (MPI Munich)<br>last presentation:<br>July 11 (mostly LCFIPlus) |
| <ul> <li>status summary:</li> <li>understanding code from DBD analysis</li> <li>debugging / de-featuring LCFIPlus on new samples and interplay with z-vertex smearing</li> </ul> |                                                                             |

# H->bb/cc/gg - overview

![](_page_25_Picture_1.jpeg)

| main physics observable(s):<br><b>BR (H-&gt;bb/cc/gg) from vvH @ 500 GeV</b>                                                                                                     | analyser(s):<br>Masakazu Kurata (KEK)     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| intermodiate observable(s):                                                                                                                                                      | Ryo Yonamine (Tonoku)                     |
| M <sub>H</sub> (bb/cc/gg)                                                                                                                                                        | reviewer(s):<br>Hiroaki Ono (NDU Niigata) |
| <ul> <li>performance aspect(s):</li> <li>b-tag / c-tag</li> <li>JER / JES for heavy flavours</li> </ul>                                                                          | Frank Simon (MPI Munich)                  |
| <ul> <li>status summary:</li> <li>understanding code from DBD analysis</li> <li>debugging / de-featuring LCFIPlus on new samples and interplay with z-vertex smearing</li> </ul> | ore person<br>ore person                  |

#### Status of Benchmarks - BSM

# Light Higgsinos - overview

![](_page_27_Picture_1.jpeg)

| main physics observable(s):<br><b>Μ, pol. σ's @ 500 GeV</b>                                                                                      | analyser(s):<br>Swathi Sasikumar (DESY)      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <ul> <li>intermediate observable(s):</li> <li>purity of z-vertex groups</li> <li>sqrt(s') from ISR recoil, E<sub>π*</sub> vs sqrt(s')</li> </ul> | reviewer(s):<br>Akimasa Ishikawa<br>(Tohoku) |
| <ul> <li>performance aspect(s):</li> <li>low pt tracking eff/pur &amp; PID</li> <li>ISR reconstruction</li> <li>BoomCol vote</li> </ul>          | last presentation:<br>Aug 22                 |

#### status summary:

 low-pt tracking efficiency and track-based z-vertex finder on new samples as expected

![](_page_28_Picture_0.jpeg)

# Light Higgsinos - results (ILD I5)

group tracks based on  $z_0$ , identify signal vs  $\gamma\gamma$  -> low pt hadrons

![](_page_28_Figure_3.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

| main physics observable(s):<br>• 95% CL limit on $\Lambda$ vs M @ 500 GeV for V (A)<br>• $\delta$ M vs M for Vector (Axialvector),<br>• $\chi^2$ (Vector vs Axialvector) vs M               | analyser(s):<br>Ahmed Mustahid (Tohoku)<br>reviewer(s): |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| intermediate observable(s):<br><b>photon energy spectrum</b>                                                                                                                                | Filip Zarnecki (Warsaw)                                 |
| <ul> <li>performance aspect(s):</li> <li>photon: eff./pur., E and angular resolutions</li> <li>Bhabha veto efficiency in BeamCal</li> <li>veto tracks from γγ / pair backgrounds</li> </ul> | last presentation:<br>July 25 (DBD samples)             |
| <ul> <li>status summary:</li> <li>very first look into new samples</li> <li>progress slowed by exams &amp; illness</li> <li>hope to resume now</li> </ul>                                   | 28                                                      |

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

| main physics observable(s):<br>• 95% CL limit on $\Lambda$ vs M @ 500 GeV for V (A)<br>• $\delta$ M vs M for Vector (Axialvector),<br>• $\chi^2$ (Vector vs Axialvector) vs M               | analyser(s):<br>Ahmed Mustahid (Tohoku)<br>reviewer(s): |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| intermediate observable(s):<br><b>photon energy spectrum</b>                                                                                                                                | Filip Zarnecki (Warsaw)                                 |
| <ul> <li>performance aspect(s):</li> <li>photon: eff./pur., E and angular resolutions</li> <li>Bhabha veto efficiency in BeamCal</li> <li>veto tracks from γγ / pair backgrounds</li> </ul> | last presentation:<br>July 25 ( <b>Js</b> mples)        |
| <ul> <li>status summary:</li> <li>very first look into new samples</li> <li>progress slowed by exams &amp; illness</li> <li>hope to resume now</li> </ul>                                   | rgenersoli<br>ore persoli<br>ore 28                     |

# Extra Higgs bosons - overview

![](_page_31_Picture_1.jpeg)

| main physics observable(s):<br>95% CL limit on g(Zhh) vs M <sub>h</sub> @ 500 GeV                                                                                                               | analyser(s):<br>Yan Wang (DESY)                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| intermediate observable(s):<br><b>recoil mass spectrum (</b> μμ <b>)</b>                                                                                                                        | reviewer(s):<br>Kiyotomo Kawagoe (Kyushu)<br>Junping Tian (Tokyo) |
| <ul> <li>performance aspect(s):</li> <li>muon ID efficiency / purity</li> <li>momentum resolution (not only high-pt)</li> <li>ISR reconstruction</li> </ul>                                     | last presentation:<br>Aug 22                                      |
| <ul> <li>status summary:</li> <li>analysis ~completed on DBD samples at 250 Ge</li> <li>importance of performance aspects quantifient of the samples</li> <li>working on new samples</li> </ul> | ∙<br>V<br>ied                                                     |

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

**DBD analysis** for  $\mu\mu$ H, 2 ab<sup>-1</sup> 250 GeV, canonical pol. sharing

 $S_{95} := \sigma_{95}( \ Z \ H(M_H = X) \ ) \ / \ \sigma_{SM}( \ Z \ H(M_H = X) \ )$ 

# conclusions for detector optimisation (@ 250 GeV!)

- full sim  $\sim$ = generator level for  $M_H > 70 \text{ GeV}$
- Iow masses: ISR veto crucial
- understand magenta vs red: γ conversions?

![](_page_32_Figure_8.jpeg)

#### IDR full sim:

- signal samples processed
- first look into backgrounds at 500 GeV WiP (plot shown on Aug 22 buggy)

## Next Steps & Conclusions

# Next Steps

![](_page_34_Picture_1.jpeg)

- presentation of the last so far not yet presented analyses in software & analysis phone meeting
- Oct 19-21: ILD Benchmarking Days
  - as pre-meeting to LCWS
  - hands-on working meeting of all analysers, reviewers & phsyics/software conveners
  - any analysis which should go into the IDR needs to be
     complete by then and have a skeleton in the IDR
  - ... and have note / paper draft soon thereafter

# Conclusions

![](_page_35_Picture_1.jpeg)

- all of this is on a very critical path
- many people can work only a small amount of their time on the analyses and/or are not very experienced
- any help is welcome!!!
- I personally hope that now after summer we see a real push in **all** of the analyses...