Report from AHCAL Analysis Workshop

- > AHCAL testbeam prototype
- Testbeams at SPS in 2018
- > Analysis Workshop

Katja Krüger ILC project meeting 7. September 2018

New AHCAL Testbeam Prototype

- technological prototype with integrated readout electronics
- > 38 active layers of 72*72 cm²
- > 4 HBUs per module
 - 16 ASICs, 576 channels
 - in total: 608 ASICs, ~22000 channels
- > all modules with surface-mount MPPCs
 - 2668 pixels
 - operated at 5V overvoltage
- very homogeneous detector
- built and tested during 2016 and 2017

Goals of SPS testbeam

technical

- demonstrate capabilities of SiPM-on-tile calorimeter concept with scalable detector design
- reliable operation of large prototype
- scientific
 - energy linearity and resolution for electrons and pions up to ~100 GeV
 - hit time correlations
 - shower profiles
 - shower separation
- > data sets
 - wide muon beam for (cross check) of MIP calibration
 - energy scan electrons & pions
 - data at shifted beam positions

Testbeam setup 9. – 23. May 2018 in H2 at SPS

> 38 active layers of 72*72 cm² in steel absorber with 1.7 cm layer thickness (~4 λ)

- > mounted on the movable platform ("scissors table") in H2
- beam instrumentation: wire chambers, trigger scintillators, Cherenkov detector

Testbeam setup 27. June – 4. July 2018 in H2 at SPS

> as in May, plus:

- added one module with 6*6 cm2 tiles
- added CMS HGCAL "thick stack" (12 layers of 1 HBU, 7.4 cm steel absorber) as tailcatcher
- added single HBU in front of absorber as "pre-shower" detector

Katja Krüger | Report from AHCAL Analysis Workshop | ILC@DESY project meeting | 7. September 2018 | Page 5/23

Data taking

- very stable running
- > all 38 layers working well, <1‰ dead channels</p>
- muons for calibration
 - several position scans
- electrons: energy scan
 - energies: 10, 20, 30, 40, 50, 60, 80, 100 GeV
 - · with and without power pulsing
 - typically 200,000 to 400,000 ev. per energy
- negative pions: energy scan
 - energies: 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 160, 200 GeV (+ test at 350)
 - with and without power pulsing
 - typically 400,000 to 600,000 ev. per energy
 - shifted positions for particle separation studies
- > additional technical tests
- in total collected several 10^7 events

Analysis Workshop at University of Tokyo

- > 5. 25. August 2018
- > goals:
 - harmonize analyses for new data
 - first round of data quality checks and calibrations
 - getting to know each other
- participants
 - 10 students
 - 1 post-doc
 - 3 seniors
- > a hands-on working meeting!

Structure of the Workshop

> first week

- presentations of previous work, software status and strategy (3-4 talks per day)
- Iots of discussions!
- a bit of hands-on work
- second and third week
 - a lot of hands-on work
 - 1-2 hours at the end of each day for status reports
- last 1.5 days
 - short presentations of work done and current status

Software & simulation

- > preparation before the workshop
 - correct geometry description for May and June in database
 - first version of simulation running
 - copied code from DESY svn to stash (DESY git)

- status at the beginning
 - no clean code structure (many variables calculated in RootTreeWriter)
 - "historic" code
- many discussions on how to implement things in a clearly structured and reusable way
 - one Marlin processor for "standard" variables needed by many analyses
 - encourage to move analysis code to Marlin processors
- started to clean up and document software

Calibration: LEDs

- LED data taken with external trigger
- > pedestal can give information on dead and noisy channels
- gain from single-pixel-spectra
 - translation of signals to pixel scale, needed for SiPM saturation corrections
 - monitoring of detector stability

very homogenous gain, very stable operation

600

650

700

750 ADC

200

100

500

550

Temperature compensation

gain and photon detection efficiency of SiPMs depend on temperature
can avoid changes by stabilizing temperature or adapting bias voltage (HV)

temperature compensation: use mean temperature in a layer to adjust HV
used routinely, HV changes as expected, gain stays stable

Temperature compensation

gain and photon detection efficiency of SiPMs depend on temperature
can avoid changes by stabilizing temperature or adapting bias voltage (HV)

temperature compensation: use mean temperature in a layer to adjust HV
used routinely, HV changes as expected, gain stays stable

High gain / low gain intercalibration

- > ASIC has two preamplifiers: high gain and low gain
 - in normal runs, the ASIC choses depending on signal size (auto-gain)
 - can also do special runs where both gains are read out
- > need to determine calibration constants
 - the gain ratio (intercalibration factor)
 - Iow gain pedestals
- extracted individual intercalibration factors from LED data for ~80% channels, application to beam data not yet satisfactory

Calibration: pedestal and MIPs

- Muons: position scan of full detector
 - pedestal from non-triggered channels (>350 000 constants!)
 - determine MIP scale for all channels
- May calibrations done, June started

Katja Krüger | Report from AHCAL Analysis Workshop | ILC@DESY project meeting | 7. September 2018 | Page 14/23

Calibration: pedestal and MIPs

- Muons: position scan of full detector
 - pedestal from non-triggered channels (>350 000 constants!)
 - determine MIP scale for all channels
- May calibrations done, June started
- MIP calibration also for simulation

DESY

Calibration: hit time measurement

- time is measured with a TDC, so needs a similar calibration as the amplitude measurement
- starting point: initial calibration looks OK for muons, but see "satellite" peaks
 - mainly caused by (non-understood) electronics feature shifting the whole event, so can be corrected
 - remaining effect from single mis-calibrated channels
- investigating remaining effect, studying dependence on ASIC occupancy

Data quality checks

- developed data quality criteria to judge run quality
 - classify into good, check, scan (other position, needs cross check), bad

> all pion runs checked, no bad run

> check of electron runs ongoing

Comparison with and without power pulsing

esh5 0

6000

energySum

286235

3795 1120

Entries

Mean

Std Dev

- see a ~4% shift in energy sum (PP is lower)
 - effect in electron and pion data
 - effect everywhere in the detector
- number of hits agrees >

entries 008

700

600

500

400

300

200

100

0

1000

2000

calibration issue? studies ongoing

energySum Pion160GeV w/ and w/o PP

3000

4000

5000

Particle Identification

- adapted & tuned particle identification code from physics prototype
 - graphical representation to identify possible improvements
- implementation as Marlin processor in progress

0.9

MC 10GeV particles

Before cuts:

- π^{-} : 70118 events
- μ⁻: 41858 events
- e⁻: 26419 events
- total: 138395 events

Fraction in first 25 layers vs number of hits.

After cuts:

- π^- : 64529 events (92%)
- μ⁻: 41783 events (99.7%)
- e⁻: 26230 events (99.2%)

1200

Tailcatcher (June)

tail catcher information only in ~80% of events (timing reasons)

- developed clean selection
- > simple summing of hit energies already improves energy sum
- > next: determine optimal weights for hit energies

Energy Sum

Wire chambers

- > wire chambers can give more precise position information
- wire chambers read out separately, assignment to AHCAL events by time
 - encountered some unexpected effects, solved
- > wire chamber information now available in reconstruction and event display
 - global alignment constants needed per detector position

x position correlation

August 2018

Universität Hamburg Der Forschung | der Lehre | der Bildung

Thank you to all!

Thank you for your attention!

Summary of the 2018 Tokyo Analysis Workshop - Saiva Huck

47

Summary II (very personal)

- > first workshop of this kind for me, so structure was adapted ad hoc
- I learned a lot from the presentations
- I was VERY impressed with the amount of work that can get done in 3 weeks
 - when all experts are immediately available
 - with a good team spirit

... and thanks for all the fish!

Backup

AHCAL technological prototype: Integrated Electronics

- HCAL Base Unit: 36*36 cm², 144 tiles, 4 SPIROC2 readout ASICs
- Central Interface Board: DIF, Calibration, Power for 1 layer
- > 5.4 mm active layer thickness
- > 1 layer has up to 3*6 HBUs

AHCAL technological prototype

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles
- > fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers
- scalable to full detector (~8 million channels)
- HCAL Base Unit: 36*36 cm², 144 tiles, 4 ASICs
 - slabs of 6 HBUs
 - up to 3 slabs per layer

Mass production

- > design optimized for mass production
 - SMD SiPMs soldered automatically
 - injection-moulded polystyrene tiles, no further surface treatment
 - automatic wrapping in ESR reflector foil
 - glueing of tiles with screen printer and pick-and-place machine

Quality assurance and calibration

- > SiPM sample tests
- tile sample tests
- test of all ASICs
- > all individual HBUs tested and calibrated with LEDs and cosmics
- > all modules (2*2 HBUs) tested with cosmics
- all modules calibrated with LEDs and DESY beam (3 GeV electrons as MIPs)
 - calibrate 4 modules in parallel, ~1 day per set
 - automated scan with automated control of the moving stage
 - many technical tests: gain switching, ...
- result: overall quality very good

Very first look into data

Very first look into electron data

> May:

- clear tail to smaller number of hits and earlier center-of-gravity
- present for all electron energies

- > June:
 - changed beam steering
 - tail gone, nice and narrow energy distributions

Electrons during beam tuning in June

Katja Krüger | Report from AHCAL Analysis Workshop | ILC@DESY project meeting | 7. September 2018 | Page 31/23

Very first look into pion data

Pions in June: importance of tail catcher

DESY.

Timing analysis

> first attempt of calibration of the hit time measurement

- promising resolution in core (~8 ns FWHM, with slow testbeam clock)
- > additional peaks at ~28 ns under study
 - probably the whole event is shifted, so can be corrected in reconstruction

