

News from ILD

LCWS 2018 October 22, 2018

Outline

- Overview
- ILD Performance: Understanding and Optimizing
 - Basic Performance
 - Physics Performance
- Conclusions •

The ILD Concept

From key requirements from physics:

- \mathbf{p}_{t} resolution (total ZH x-section) $\sigma(1/p_{t}) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_{t} \sin^{1/2} \theta)$
- vertexing (H \rightarrow bb/cc/tt) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2} \theta) \mu m$
- jet energy resolution 3-4%(H \rightarrow invisible)
- hermeticity $\theta_{min} = 5 \text{ mrad}$ (H \rightarrow invis, BSM)

To key features of the **detector**:

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx !)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

The ILD Concept

From key requirements from physics:

- p_t resolution (total ZH x-section) $\sigma(1/p_t) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_t \sin^{1/2}\theta)$
- vertexing $(H \rightarrow bb/cc/\tau\tau)$ $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- jet energy resolution 3-4% $(H \rightarrow invisible)$
- hermeticity $\theta_{min} = 5 \text{ mrad}$ $(H \rightarrow invis, BSM)$

To key features of the **detector**:

- low mass tracker:
 - main device: **Time Projection Chamber** (dE/dx !) •
 - add. silicon: eg VTX: 0.15% rad. length / layer) ullet
- high granularity calorimeters • optimised for particle flow

The ILD Concept

From key requirements from physics:

- \mathbf{p}_{t} resolution (total ZH x-section) $\sigma(1/p_{t}) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_{t} \sin^{1/2} \theta)$
- vertexing (H \rightarrow bb/cc/tt) $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2} \theta) \mu m$
- jet energy resolution 3-4%(H \rightarrow invisible)
- hermeticity $\theta_{min} = 5 \text{ mrad}$ (H \rightarrow invis, BSM)

<mark>≈ ATLAS / 3</mark>

≈ CMS / 4

To key features of the **detector**:

- low mass tracker:
 - main device: Time Projection Chamber (dE/dx !)
 - add. silicon: eg VTX: 0.15% rad. length / layer)
- high granularity calorimeters optimised for particle flow

Not fully fair comparison since experimental environment at ILC very different:

- much lower backgrounds
- much less radiation

much lower collision rate

ILD Members & Acti

68 institutes signed up

22.02.2018

ILD Meeting 2018 in Ichinoseki

The ILD Document

Next ILD goal: ILD Design Report = "IDR"

comprehensive document describing ILD

South Pacific

- especially all developments since the DBD
- basis for real call for Lols or legacy documentation?
- executive summary => ILD input to European Strategy ۲
- re-optimisation based on new software framework

ILD Meeting 2018 in Ichinoseki

20-22 February 2018 Ichinoseki, Japan/Ichinoseki Cultural Center ponsored by the Iwate Prefecture ILC Promotion Counci

20-22 February 2018 Ichinoseki, Japan/Ichinoseki Cultural Cent Sponsored by the Iwate Prefecture ILC Promotion Council **(手県国際リニアコライダー推進協議会**

Next ILD goal: ILD Design Report = "IDR"

comprehensive document describing ILD

South Pacific

- especially all developments since the DBD
- basis for real call for Lols or legacy documentation?
- executive summary => ILD input to European Strategy •
- re-optimisation based on new software framework

ILD Meeting 2018 in Ichinoseki

20-22 February 2018 Ichinoseki, Japan Ichinoseki Cultural Center onsored by the lwate Prefecture ILC Promotion Counci

Oct 19-21, UT Arlington: ILD Benchmarking Days

Welcome to the ILD meeting 2018

in Ichinoseki, IWATE

20-22 February 2018 Ichinoseki, Japan/Ichinoseki Cultural Cent

Sponsored by the Iwate Prefecture ILC Promotion Council

手県国際リニアコライダー推進協議会

AHCal: 3 weeks at CERN-SPS with new large prototype

AHCal: 3 weeks at CERN-SPS with new large prototype

AHCal: 3 weeks at CERN-SPS with new large prototype

Electron Beam ning several (

AHCal: 3 weeks at CERN-SPS with new large prototype

Electron Beam ning several (

AHCal: 3 weeks at CERN-SPS with new large prototype

SiW ECal: 2 weeks at DESY with electric long slab prototype

Electron Beam ning several (

AHCal: 3 weeks at CERN-SPS with new large prototype

SiW ECal: 2 weeks at DESY with electric long slab prototype

Electron Beam ning several (

ILD Performance: Understanding and Optimising

Motivation

ILD as in the DBD

- is well thought-through detector design
- delivers the required physics performance
- => why bother about optimisation?

in ance

Motivation

ILD as in the DBD

- is well thought-through detector design
- delivers the required physics performance
- => why bother about optimisation?

Goals of current optimisation process:

- how large is "Large"?
- understand better the **dependence of physics performance** on various (high-level) detector performance aspects
- quantify expected gain from possible improvements of the detector, e.g. ToF, new vertex geometry, ...
- identify limiting factors in detector design and/or reconstruction and quantify their impact

- completely new detector simulation based on DD4HEP:
 - large detector "ILD-L": $R_{TPC} = 1.8 \text{ m}, B = 3.5 \text{ T}$
 - small detector "ILD-S": $R_{TPC} = 1.46$ m, B = 4 T
- general overhaul of reconstruction
- ... and adding further realism
- Spring 2018: first large scale MC production => thanks to ILD MC production team!
- full SM @ 500 GeV, plus some 1 TeV, both detectors •
- based on events generated for DBD (Whizard 1.95)

- completely new detector simulation based on DD4HEP:
 - large detector "ILD-L": $R_{TPC} = 1.8 \text{ m}, B = 3.5 \text{ T}$
 - small detector "ILD-S": $R_{TPC} = 1.46$ m, B = 4 T
- general overhaul of reconstruction
- ... and adding further realism
- Spring 2018: first large scale MC production => thanks to ILD MC production team!
- full SM @ 500 GeV, plus some 1 TeV, both detectors
- based on events generated for DBD (Whizard 1.95)

- completely new detector simulation based on DD4HEP:
 - large detector "ILD-L": $R_{TPC} = 1.8 \text{ m}, B = 3.5 \text{ T}$
 - small detector "ILD-S": $R_{TPC} = 1.46$ m, B = 4 T
- general overhaul of reconstruction
- ... and adding further realism
- Spring 2018: first large scale MC production => thanks to ILD MC production team!
- full SM @ 500 GeV, plus some 1 TeV, both detectors
- based on events generated for DBD (Whizard 1.95)

- completely new detector simulation based on DD4HEP:
 - large detector "ILD-L": $R_{TPC} = 1.8 \text{ m}, B = 3.5 \text{ T}$
 - small detector "ILD-S": $R_{TPC} = 1.46$ m, B = 4 T
- general overhaul of reconstruction
- ... and adding further realism
- Spring 2018: first large scale MC production => thanks to ILD MC production team!
- full SM @ 500 GeV, plus some 1 TeV, both detectors
- based on events generated for DBD (Whizard 1.95)

next step (post-IDR): 250 GeV with Whizard 2

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Question: really needed / worth the effort?

DBD-ILD includes an antiDID field

- guides e⁺e⁻ pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Question: really needed / worth the effort?

DBD-ILD includes an antiDID field

- guides e⁺e⁻ pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Post-DBD simulation studies:

- much less hits in BeamCal
- much less back-scatter
- => much smaller impact of antiDID ?

DBD-ILD includes an antiDID field

- guides e⁺e⁻ pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Post-DBD simulation studies:

- much less hits in BeamCal
- much less back-scatter
- => much smaller impact of antiDID ?

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Post-DBD simulation studies:

- much **less** hits in BeamCal
- much less back-scatter
- => much smaller impact of antiDID ?

- strong dependence on Geant4 parameters
- makes curling particles stop articles
- post-DBD results shown at previous meetings need to be revisited

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Question: really needed / worth the effort?

Post-DBD simulation studies:

- much **less** hits in BeamCal
- much less back-scatter

=> much smaller impact of antiDID ?

Recently "discovered":

- strong dependence on Geant4 parameters
- makes curling particles stop artficially
- post-DBD results shown at previous meetings

2000

2500

1000

1500

endpoint z [mm]

3000

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Post-DBD simulation studies:

- much **less** hits in BeamCal
- much less back-scatter
- => much smaller impact of antiDID ?

- strong dependence on Geant4 parameters
- makes curling particles stop articles
- post-DBD results shown at previous meetings need to be revisited

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Question: really needed / worth the effort?

Post-DBD simulation studies:

- much **less** hits in BeamCal
- much less back-scatter
- => much smaller impact of antiDID ?

- strong dependence on Geant4 parameters
- makes curling particles stop articles
- post-DBD results shown at previous meetings need to be revisited

DBD-ILD includes an antiDID field

- guides e^+e^- pairs from beamstrahlung down the beam pipe
- reduces "blind region" of BeamCal -> hermeticity!
- reduces back-scatter into vertex detector

Question: really needed / worth the effort?

Post-DBD simulation studies:

- much **less** hits in BeamCal
- much less back-scatter

=> much smaller impact of

- strong dependence on **Cant4** parameters
- makes curling particles stop articles
- post-DBD results shown at previous meetings need to be revisited

Documentation

Significant effort to improve documentation w.r.t. previous rounds of detector optimisation:

- an overview on each benchmark on ILD webpages
- general ilcsoft and ILD specific documentation on github
- code, scripts, macros, README on github
- public ILD note or paper (with internal review process)
- and finally the IDR...

	≡ Skeleton
•	ILD skeleton repository to create new analysis repositories
	● C++ ★ 1 😵 1

Basic Performance

Momentum Resolution

Momentum Resolution

 $\cos(\theta)$

Physics example: A_{FB}(b) from e+e- -> bb @ 250 GeV clarify LEP vs SLD discrepancy

Standard definition of Jet Energy Resolution / Scale (JER/JES):

- dijet events with light quarks: ee -> uu / dd / ss
- fixed E_{CM} = 2 E_{quark}; no ISR, no beam energy spectrum
- observable: total visible energy no jet finding

Visible on *physics* **events?**

A.Ebrahimi

ee -> HZ ->qqqq: Z mass dependence 90.6 on quark flavour

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons
 - but cheating neutrinos

cause huge degradation of c/b - JER/JES

15

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons
 - but cheating neutrinos

cause huge degradation of c/b - JER/JES

Jet Energy Scale, Icos(θ)I<0.7 (Barrel)

15

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons •
 - but cheating neutrinos •

cause huge degradation of c/b - JER/JES

Jet Energy Scale, Icos(θ)I<0.7 (Barrel)

RMS₉₀(E) / Mean₉₀(E) [%]

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons •
 - but cheating neutrinos •

cause huge degradation of c/b - JER/JES

Jet Energy Scale, Icos(θ)I<0.7 (Barrel)

RMS₉₀(E) / Mean₉₀(E) [%]

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons •
 - but cheating neutrinos •

cause **huge** degradation of c/b - JER/JES

Jet Energy Scale, Icos(θ)I<0.7 (Barrel)

events

of

ž⁴⁰⁰

200

0

- using new ee -> cc / bb analogously to uds samples
- differences in
 - fragmentation
 - number /energy of neutral hadrons •
 - but cheating neutrinos •

cause **huge** degradation of c/b - JER/JES

Jet Energy Scale, Icos(θ)I<0.7 (Barrel)

events

of

600

ž⁴⁰⁰

200

- differences in •

- ILD baseline: **dE/dx** (TPC) **resolution** ٠
 - **ILD-L**: 4.4% (sim) vs 4.2...4.7% (testbeam)
 - ILD-S: 4.9% (sim) vs 4.8...5.4% (testbeam)
- **NEW**: Studied potential improvement by **time-of-flight** by assuming ٠ 10, 50,100 ps resolution on first 10 ECal hits

- ILD baseline: **dE/dx** (TPC) **resolution** ٠
 - **ILD-L**: 4.4% (sim) vs 4.2...4.7% (testbeam)
 - **ILD-S: 4.9% (sim) vs 4.8...5.4% (testbeam)**
- **NEW**: Studied potential improvement by **time-of-flight** by assuming ٠ 10, 50,100 ps resolution on first 10 ECal hits

<u>O</u> 0.6 dE/dx 0.4 0.2

ILD baseline: **dE/dx** (TPC) - **resolution** •

```
ILD-L: 4.4% (sim) vs 4.2...4.7% (testbeam)
```

- **ILD-S: 4.9% (sim) vs 4.8...5.4% (testbeam)**
- **NEW:** Studied potential improvement by **time-of-flight** by assuming 10, 50,100 ps resolution on first 10 ECal hits

<u>O</u> 0.6 dE/dx 0.4 0.2

- 10, 50,100 ps resolution on first 10 ECal hits

- 10, 50,100 ps resolution on first 10 ECal hits

Physics Performance

Choice of Physics Benchmarks

- cover a broad range of important performance aspects \bullet
- focus on channels where detector is expected to dominate over limitations of reconstruction / analysis \bullet **ECM = 500 GeV** (in one case 1 TeV) since **more challenging** for detector \bullet
- than 250 GeV:
 - higher momenta
 - more collimated jets
 - more forward topologies
 - higher backgrounds

. . .

Benchmark M(H->bb) BR(H->mumu) H->invisible ee->tautau ee->WW->qqlnu ee->nunuqqqq ee->gammaZ tt->bb qqlnu BR(H->bb/cc/gg) low DM Higgsinos mono-photon WIMPs extra H bosons

b/c JER/JESuds respt resmu IDe ID $\gamma E / \theta$ ISR tagBeam Calb-/c-tagPID,vertex chargetag111 <th></th>											
Image: series of the series	b/c JER/JES	uds JER/JES	pt res	mu ID	e ID	γ Ε / θ	ISR tag	Beam Cal	b-/c-tag	PID,vertex charge	ta
Image: selection of the											
Image: series of the series											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: state of the state of											
Image: Second seImage: Image: I											
Image: Second se Image: Image: Ima											

Choice of Physics Benchmarks

- cover a broad range of important performance aspects ۲
- focus on channels where detector is expected to dominate over limitations of reconstruction / analysis \bullet **ECM = 500 GeV** (in one case 1 TeV) since **more challenging** for detector •
- than 250 GeV:
 - higher momenta
 - more collimated jets
 - more forward topologies
 - higher backgrounds

. . .

A few examples....

... all work in progress!

mono-photon whimes

extra H bosons

b/c JER/JES	uds JER/JES	pt res	mu ID	e ID	γ Ε / θ	ISR tag	Beam Cal	b-/c-tag	PID,vertex charge	ta

H-> $\mu\mu$ and momentum resolution

main physics observable: $\sigma(\nu\nu H) \times BR(H->\mu\mu) @ 500 GeV$

=> analysis on new samples w.i.p.

DBD analysis for vvH + qqH, 2 ab^{-1} 250 GeV

+ 4ab 500 GeV, canonical pol. sharing

- full sim: 18%
- **"perfect" momentum resolution (2*10⁻⁶): 14%**
- "theoretical limit"(100% eff, 0 bkg): 7%

H-> $\mu\mu$ and momentum resolution

main physics observable: $\sigma(\nu\nu H) \times BR(H->\mu\mu) @ 500 GeV$

=> analysis on new samples w.i.p.

DBD analysis for $\nu\nu$ H + qqH, 2 ab⁻¹ 250 GeV

- + 4ab 500 GeV, canonical pol. sharing
 - full sim: 18% •
 - "perfect" momentum
 resolution (2*10⁻⁶): 14%

H-> $\mu\mu$ and momentum resolution

main physics observable: $\sigma(\nu\nu H) \times BR(H->\mu\mu)$ @ 500 GeV => analysis on new samples w.i.p.

DBD analysis for $\nu\nu$ H + qqH, 2 ab⁻¹ 250 GeV + 4ab 500 GeV, canonical pol. sharing

- full sim: 18% •
- "perfect" momentum resolution (2*10⁻⁶): 14%

H-> $\mu\mu$ and momentum resolution

main physics observable: $\sigma(\nu\nu H) \times BR(H->\mu\mu)$ @ 500 GeV => analysis on new samples w.i.p.

DBD analysis for vvH + qqH, 2 ab⁻¹ 250 GeV + 4ab 500 GeV, canonical pol. sharing

- full sim: 18% •
- "perfect" momentum resolution (2*10⁻⁶): 14%

H-> $\mu\mu$ and momentum resolution

main physics observable: $\sigma(\nu\nu H) \times BR(H->\mu\mu)$ @ 500 GeV => analysis on new samples w.i.p.

DBD analysis for vvH + qqH, 2 ab⁻¹ 250 GeV + 4ab 500 GeV, canonical pol. sharing

- full sim: 18% •
- "perfect" momentum resolution (2*10⁻⁶): 14%
- "theoretical limit"(100% eff, 0 bkg): 7%

c.f. Higgs parallel Thu 8:30 am S.Kawada

$S_{95} := \sigma_{95}(ZH(M_{H}=X)) / \sigma_{SM}(ZH(M_{H}=X))$

$S_{95} := \sigma_{95}(ZH(M_{H}=X)) / \sigma_{SM}(ZH(M_{H}=X))$

$S_{95} := \sigma_{95}(ZH(M_{H}=X)) / \sigma_{SM}(ZH(M_{H}=X))$

Conclusions

Conclusions

- ILD is well alive despite difficult funding/person power situation •
- **ILD** members are very active in •
 - R&D collaborations (testbeams...) •
 - preparing input for the European Strategy Update, for ILD and ILC
- ILD completed first large scale MC production with new simulation & • reconstruction chain based on DD4HEP
- ILD is re-optimizing its detector design: •
 - benchmarking "large" and "small" ILD with selected physics channels •
 - investigating possible **improvements** to the detector concept: e.g. forward tracking & time-of-flight
- All developments since DBD will be summarised in the ILD Design Report "IDR" •

Backup

main physics observable: **limits on aQGC @ 1 TeV**

intermediate observable: **M_{ij} vs M_{lk} from vvqqqq**

J. Beyer

main performance aspect: **JER & JES (udscb)**

25

main physics observable: **limits on aQGC @ 1 TeV**

intermediate observable: M_{ij} vs M_{Ik} from vvqqqq

WW/ZZ separation, averaged dijet-mass

J. Beyer

main performance aspect: **JER & JES (udscb)**

25

main physics observable: limits on aQGC @ 1 TeV

WW/ZZ separation, averaged dijet-mass

WW/ZZ separation, averaged dijet-mass

J. Beyer

intermediate observable: M_{ii} vs M_{lk} from vvqqqq

main performance aspect: **JER & JES (udscb)**

25

main physics observable: limits on aQGC @ 1 TeV

WW/ZZ separation, averaged dijet-mass

WW/ZZ separation, averaged dijet-mass

J. Beyer

intermediate observable: M_{ii} vs M_{lk} from vvqqqq

main performance aspect: **JER & JES (udscb)**

using reco of inital cns, w/ cuts, only udsc

Higgsinos

