FONT Meeting Friday 12th October 2018

Calibration by iteration

Douglas BETT

Contents

Description of "fit calibration" method

- Method for iterative fit of calibration constants

- Results
 - From ColinRun3, nominal position and tilt
 - Calibration, resolution and "scale" i.e. $\langle |k| \rangle$

"Fit calibration" method

- In the "fit scale" method, the position at the BPM of interest is described as a linear combination of the positions at the other two BPMs: $y_{\kappa} = \alpha_{\kappa\lambda}y_{\lambda} + \alpha_{\kappa\mu}y_{\mu}$
 - This is equivalent to fitting the calibration scale factors k_{λ} and k_{μ} (for fixed k_{κ})
- The fit can be improved by increasing the number of degrees of freedom:

$$y_{\kappa} = \alpha_{\kappa I_{\lambda}} \frac{I_{\lambda}}{q} + \alpha_{\kappa Q_{\lambda}} \frac{Q_{\lambda}}{q} + \alpha_{\kappa I_{\mu}} \frac{I_{\mu}}{q} + \alpha_{\kappa Q_{\mu}} \frac{Q_{\mu}}{q}$$

• The corresponding geometric expression is:

$$y_{\kappa} = \frac{C_{\kappa\lambda}}{k_{\lambda}} \left(\cos \theta_{\lambda} \frac{I_{\lambda}}{q} + \sin \theta_{\lambda} \frac{Q_{\lambda}}{q} \right) + \frac{C_{\kappa\mu}}{k_{\mu}} \left(\cos \theta_{\mu} \frac{I_{\mu}}{q} + \sin \theta_{\mu} \frac{Q_{\mu}}{q} \right)$$

- So the calibration constants can be expressed in terms of the fit parameters as follows: $k_{\lambda}^{2} = \frac{C_{\kappa\lambda}^{2}}{\alpha_{\kappa I_{\lambda}}^{2} + \alpha_{\kappa Q_{\lambda}}^{2}} \qquad \cos \theta_{\lambda} = \frac{k_{\lambda}}{C_{\kappa\lambda}} \alpha_{\kappa I_{\lambda}}$
- i.e. the fit calibration method fits k_{λ} , θ_{λ} , k_{μ} , θ_{μ} (for fixed k_{κ} and θ_{κ})

Constraint on calibration

• The calculation is typically performed three times using a different BPM as the one with a fixed calibration each time and three different estimates for the resolution are obtained

$$\frac{1}{k_{\kappa}}\frac{I_{\kappa}'}{q} = \frac{C_{\kappa\lambda}}{k_{\lambda}}\frac{I_{\lambda}'}{q} + \frac{C_{\kappa\mu}}{k_{\mu}}\frac{I_{\mu}'}{q}$$

- Not possible to allow three scale factors to vary freely due to trivial solution to above eqn: $k_{\kappa} = k_{\lambda} = k_{\mu} = \infty$
- Possible to impose a constraint on the scale factors such as $k_{\kappa} + k_{\lambda} + k_{\mu} = \text{constant}$
- For this study, the procedure was as follows:
 - Start with the calibration parameters from an actual calibration: k_A , θ_A , k_B , θ_B , k_C and θ_C
 - Obtain new estimates for k_B , θ_B , k_C and θ_C by fitting to y_A calculated using k_A and θ_A
 - Recalculate y_B and obtain new estimates for k_A , θ_A , k_C and θ_C by fitting to it
 - Recalculate y_c and obtain new estimates for k_A , θ_A , k_B and θ_B by fitting to it
 - Repeat
- Ultimately expect to converge on trivial solution

Colin3_posNomTiltNom1

Consistency of θ

 $k_A = k_B = 1, k_C = -1$

 $k_A = k_B = k_C = 1$ not consistent with geometry

Consistency of θ

Colin3_posNomTiltNom2

Colin3_posNomTiltNom3

Calibration results

Resolution results

Conclusion

- Iterative fit method rapidly "converges" in θ (for sensible initial scale factors)
 - θ switches between two possible values with each iteration
 - variability of θ from run to run (i.e. range) varies from 3° for IPA to 20° for IPC
- Scale parameter minimized after two iterations
 - Grows exponentially after this, doubling every ~20 iterations
- After two iterations resolution ~30% smaller than initial
 - Second iteration improves resolution by ~9% compared to first iteration