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The International Large Detector 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

ILD 

• Developed for precision measurements at ILC 

• Optimized for particle flow reconstruction 

• TPC with MPGD readout as main tracking detector 

• ~220 track points  continuous tracking 

• Near 100% tracking efficiency even for low momentum particles 

• Minimal material: 5% X0 in barrel, 25% X0 in endcaps 

• 3.5 T solenoid field 

• Momentum resolution required: σ1/pT = 10−4 GeV−1 (TPC only) 
 point resolution in transverse direction: σrφ = 100 μm 

• ~5% dE dx⁄  resolution allowing good particle identification 
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The DESY GridGEM Module 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

Design Goals 

• Maximum sensitive area 

• Minimal gaps 

• Minimal material 

Design Choices 

• Integrated, self supporting GEM  
amplification structure 

• 3 GEM stack supported by thin ceramic grids 

• Segmented readout anode: 

•  ~5000 pads (1.26 × 5.85 mm2) in 28 rows 

• ~95% sensitive area 

• Size and shape as planned for ILD TPC (~17 × 23 cm2) 

• Custom ALTRO system as readout electronics 

164 – 182 pads 
 

GEM 

ceramic  
grids 

anode 
pad plane 

aluminium 
frame 



Page 5 

The LCTPC Setup at the DESY II Test Beam Facility 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

DESY II 

• 1 GeV to 6 GeV electrons 

PCMag 

• 1 T superconducting solenoid 

• 3-axis moveable stage 

• 20% X0 wall thickness 

• 85 cm usable inner diameter 

Large TPC prototype 

• 75 cm diameter 

• 57 cm maximum drift length 

• Endplate with space for 7 
modules in 3 rows 

e− 

3-axis movement 

e− 
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Measuring dE dx⁄  Resolution 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Row based hit finding  track 
finding / fitting  hits associated to 
track used to estimate dE dx⁄  

• Some hit quality cuts are applied: 

• hit not at module edge 

• hit has no channel in overflow 

• no dead channels or next to one 

• no multi hit candidate 

• Around 53 valid hits per track 

• Track dE dx⁄  calculated from a 
transformation according to 
𝑒𝑒𝑒𝑒𝑒𝑒 dE dx⁄ = 1 dE dx⁄⁄  

• dE dx⁄  resolution from RMS mean⁄  
in this sample is 8.7 ± 0.1 % 



Page 7 

Measuring dE dx⁄  Resolution 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Row based hit finding  track 
finding / fitting  hits associated to 
track used to estimate dE dx⁄  

• Some hit quality cuts are applied: 

• hit not at module edge 

• hit has no channel in overflow 

• no dead channels or next to one 

• no multi hit candidate 

• Around 53 valid hits per track 

• Track dE dx⁄  calculated from a 
transformation according to 
𝑒𝑒𝑒𝑒𝑒𝑒 dE dx⁄ = 1 dE dx⁄⁄  

• dE dx⁄  resolution from RMS mean⁄  
in this sample is 8.7 ± 0.1 % 



Page 8 

Charge Calibration 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Channel Correction (CC) was  
determined by pulsing the lowest  
GEM, gaining a calibration factor  
and offset for each channel. 

• Readout does not provide self  
calibration. 

• Row Charge Correction (RCC)  
corrects mean charge on each  
row to average of all rows. 

• Equivalent to a local gain calibration, since all tracks pass over each row 
at the same location. 

• Only minor improvement in dE dx⁄  resolution by applying CC. 

• Resolution dominated by fluctuations of primary ionization. 

• RCC has no significant impact on the dE dx⁄  resolution, since gain 
was already quite homogeneous. 

• All other results make use of both correction methods. 
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• Different methods to calculate track dE dx⁄  were compared: 

• Truncated mean: Cut off fraction of highest charge hits. 

• Trimmed mean: Also cut off some lowest charge hits. 

• Using 1 dE dx⁄⁄  as an estimator gives a more symmetric 
distribution. 

• Landau / log-normal binned likelihood fit. 

• Changing fraction of hits with channels in overflow at 
different drift distances 
 drastically influence best truncation fraction and also 
performance of other methods. 

• Overflow fraction is larger for higher ionizing particles. 
 Reduces separation between particle species. 

• Overflow fraction would be minimized in real detector. 
 Use long drift data to compare estimators. 

 

Comparing Track dE dx⁄  Estimators 
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Comparing Track dE dx⁄  Estimators 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Overflow fraction would be minimized in real detector. 
 Use long drift data to compare estimators. 

• Inverted square-root method performs similarly well as 
truncation. 

• Best truncation fraction is found to be around 20%. 

• Trimming does not provide any improvement over 
truncation. 

• Landau distribution does not describe our dE dx⁄  
distribution well. 
 No good resolution expected from fit. 

• Log-normal distribution does not describe tail at long drift. 

• Fitting methods need ~10 times more computing time. 
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Extrapolating to ILD TPC 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Randomly combining hits from several real tracks to a 
pseudo track allows to test arbitrary track lengths. 

• Allows extrapolating dE dx⁄  resolution to tracks in the ILD 
TPC with up to 220 hits (large ILD) or 165 hits (small ILD). 

• Expected power law dependency found: σ dE dx⁄ ∝ Nk  

• Fitted exponents k vary between -0.45 and -0.48 for different 
data taking runs. 

• Non-Gaussian shape of hit dE dx⁄  distribution  
 no 1 N⁄  behavior of ideal Gaussian distribution 

• Resolution of ILD TPC can be estimated to be 4.2 ± 0.1 % 
for tracks with 220 hits (165 hits: 4.8 ± 0.1 %). 

• This assumes no invalid hits  lower limit on resolution. 

• Assuming 10% invalid hits resolution is increased by ~0.2%. 



dE dx⁄  with Highly Granular 
Readouts & Cluster Counting 
 
Part II 
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dE dx⁄  and Granularity 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• dE dx⁄  resolution was observed* to depend on total sample length L (TPC radius) 
and number of samples N (number of readout rows) on that length: 

σ dE dx⁄ ∝ L−0.34 × N−0.13 

• Introduce readout granularity G = N L⁄  and row height H = 1 G⁄ = L N⁄ : 
σ dE dx⁄ ∝ L−0.47 × G−0.13 = H−0.34 × N−0.47 

• Usual approach: Keep H constant, vary N (e.g. extrapolating to ILD). 

• Here: Keep L constant, vary G. 

• This should improve dE dx⁄  resolution with conventional methods for higher 
granularity. 

• Also check new algorithm enabled by very small pads: cluster counting. 

 
* Blum, Riegler, Rolandi: “Particle Detection with Drift Chambers”, 2008 
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Cluster Counting 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Charge produced on a certain track distance is Landau 
distributed. 

• The number of primary ionisation events on this distance is 
Poisson distributed  
 smaller variance  better particle identification. 

• Counting clusters allows for improved particle separation 
compared to conventional charge summation. 

• Depends on fraction of identified clusters (counting efficiency). 
 Need sufficient granularity to identify clusters! 
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Software 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Simulation with MarlinTPC in ILCSoft 

• Cluster identification via external software 'Source Extractor'  
 returns 'hits' for tracking 
[http://www.astromatic.net/software/sextractor] 

• Event display: 

• Green: electrons after drift 
• Red: digitised raw data 'heat map' 
• Blue: reconstructed hits 

• Identify and count 
clusters / hits 

Source Extractor 

Import to .slcio 

Tracking: Hough Trafo 

Export to .fits 

Generate MCParticles 

Primary Ionization 

Drift 

GEM Amplification 

Projection onto Timepix 

Timepix Digitization 

Analysis 
e.g. cluster-hit 
identification 
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Pion-Kaon Separation Power by Cluster Counting 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Separation power defined as: 

S =
µπ − µK

𝜎𝜎
=

µπ − µK
σπ2 + σK2

2�
 

• Track length L = 300 mm 

• B = 1 T 

• separation for maximum ionization difference (~15 %) 
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Pion-Kaon Separation Power by Cluster Counting 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Extrapolation by 1 N⁄  to ILD with track length L = 1.35 m. 

• Gives same result as track segment combination. 

• Gives a separation power of 3.8 with 165 µm pads  
and 3.4 with 220 µm pads. 

• Improvement to conventional charge based measure. 

pad size    = 165 µm 
drift length = 1000 mm 
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Pion-Kaon Separation Power – Larger Pads 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Cluster counting breaks down at ~300 µm. 

• 'Inverted' order of drift length because of less 
bunching, thus more single electrons are 
reconstructed. 

• Curves drop with lower pad size because of 
pixel charge threshold, given a constant gain. 

• Drop to larger pad size is expected: 
σ dE dx⁄ ∝ G−0.13 

Cluster Counting 

Charge Summation 

with lower gain 
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• Too high voltage  overflow 

• Too low voltage  threshold effects 

• Adjust voltage to pad size, take respective 
maximum separation power at each point. 

Drift length = 1000 mm 

Maximum 
  of scan 

Drift length = 200 mm 

GEM Gain Dependence of Charge Summation 
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Combined Pion-Kaon Separation Power 

Cluster Counting 
Charge Summation 

Cluster Counting 

Charge Summation 
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Translation to Resolution 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• For very small pad sizes, the separation power between Pions and Kaons at 
maximum ionization difference goes up to S =  2 for a track length of 300 mm. 

• For a large-ILD sized TPC with 1350 mm depth this results in a separation power of 
S =  4.24, which can be translated into a resolution of 3.5 % 

• A separation power of S = 1.5 for 300 mm would result in 
S =  3.18 at 1350 mm, which can be translated into a resolution of 4.7 % 

 

On special request:  

• Going from large to small ILD, assuming applicability of the formula on slide 14 
improvement with respect to usual small ILD can be calculated for the cases of: 

• Fixed number of rows (N = const.; H ∝ r)  resolution improves by a factor 0.963 

• Fixed number of channels and pad pitch (H ∝ A ∝ r2)  improves by a factor 0.955 

• Results in an improvement of about 0.2 percentage points over the usual small ILD 
with fixed granularity. 
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Summary 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Using a large TPC prototype the dE dx⁄  resolution with the DESY GridGEM 
module was successfully measured to be 8.7 ± 0.1 % for tracks with ~53 
valid hits. 

• The dE dx⁄  resolution for the track length of ~220 hits expected in the ILD TPC 
was estimated to be about 4.2 ± 0.1 % (small ILD, 165 hits: 4.8 ± 0.1 %). 
 Exceeds ILD design goal of 5%. 

• Simulations show expected behaviour of increased separation power 
(improved dE dx⁄  resolution) for higher granularity with conventional charge 
summation. 

• Cluster counting only works for very granular readouts with pad sizes below 
300 µm. 

 



Thank you 
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Charge Calibration 

| Particle ID with dE/dx with GEM | Paul Malek, 10.01.2019 

• Row Charge Correction (RCC)  
corrects mean charge on each  
row to average of all rows. 

• Equivalent to a local gain calibration. 

• Channel Correction (CC) was  
determined by pulsing the lowest  
GEM, gaining a calibration factor  
and offset for each channel. 

• Readout does not provide self calibration. 

• CC offset shifts the dE dx⁄  mean  
 applying the average offset to uncorrected data allows to judge 
changes in dE dx⁄  resolution. 

• Only minor improvement in dE dx⁄  resolution by applying CC. 

• Resolution dominated by fluctuations of primary ionization. 

• RCC has no significant impact on the dE dx⁄  resolution. 
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