Centre of Gravity

Using DWC

Olin Pinto DESY, 15th December 2018

Centre of gravity

Run number: 61156

Thank you

Basic event selection for 80 GeV electron – June 2018 data

Run number: 61156

- Number of hits: Between 200 to 300 hits
- Center of gravity along Z: 180 mm to 280 mm

Basic event selection for 80 GeV electron – June 2018 data

Run number: 61156

Centre of gravity X: Between 70 mm to 80 mm

Centre of gravity Y: Between -50 mm to -40 mm

Choosing 1cm in centre of a tile: Pick events with maximum amplitude

Saturation Correction

80 GeV electron June data, Run number: 61156

Saturation Correction for 80 GeV electron - June data

DESY.

Saturation Correction

80 GeV electron June data, Run number: 61156

The transition region of HG-LG around 5 MIP not fully understood

BACKUP

Gain Calibration

May 2018

- Fitted channels from each LED voltages are combined.
- May: Short LED no power pulsing run.
 - Gain distribution for May which consists only AHCAL(21, 888 channels). •

Total Gain Distribution

94% channels fitted

Gain Calibration

June 2018

- Gain distribution from June, includes the Tokyo layer (22464 channels). •
- Long LED no power pulsing run on 25.06.2018

98% channels fitted

Gain Calibration

October 2018

- AHCAL + Tokyo layer. ۲
- Long LED power pulsing run on 17.10.2018 •
- 20 mV steps with 2000 cycles each run. ٠

Hit K Data and MC

HitK Data and MC

Hit energy At lower MIP values

Saturation Correction

100 GeV electron June data, Run number: 61217

Saturation Correction

100 GeV electron June data, Run number: 61217

Saturation Correction for 100 GeV electron - June data

Saturation Correction for 100 GeV electron - June data

Gain Correlation

Between two days

Gain Correlation of May_07th and May_16th

Gain of Tail Catcher

Module 43 to 54

Total Gain Distribution

Light Yield

Pre-shower

,

,

Light Yield

Tail Catcher

New one here light yield of Tail catcher

Light Yield

Tokyo layer

Hit energy for 80 GeV and 100 GeV electron

Layer 2

Hit energy layer wise

80 GeV electron

Hit energy layer wise

100 GeV electron

Conclusion

	Gain	
AHCAL	Pre-Shower	Tail Catcher
~16 ADC	Varying from ~15-16 ADC	~15 and ~30 ADC
	Light Yield	
AHCAL	Pre-Shower	Tail Catcher
~14 pix/MIP	Varying from ~14 pix/MIP	~13 and ~27 pix/MIP
	Saturation Correction	
2433	2533 and 2668	2533
Under-estimates the data	Over-estimates the data	Agrees to certain extent with data